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Theoretical methods for dealing with diffusion-controlled reactions inevitably rely on some kind of approxi-
mation, and to find the one that works on a particular problem is not always easy. Here the approximation used
by Bogolyubov to study a weakly nonideal Bose gas, referred to as the weakly nonideal Bose gas approxima-
tion (WBGA), is applied in the analysis of three reaction-diffusion modgjsA+A—@, (i) A+B—@, and
(i) A+A,B+B,A+B—@ (theABBAmode). Two types of WBGA are considered, the simpler WBGA-I and
the more complicated WBGA-II. All models are defined on the lattice to facilitate comparison with computer
experimen{simulation. It is found that the WBGA describes titet B reaction well, it reproduces the correct
d/4 density decay exponent. However, it fails in the case ofitheA reaction and thé BBA model.(To cure
the deficiency of WBGA in dealing with th&+ A model, a hybrid of the WBGA and Kirkwood superposition
approximations is suggestedt is shown that the WBGA-I is identical to the dressed-tree calculation sug-
gested by LegJ. Phys. A27, 2633 (1994)], and that the dressed-tree calculation does not lead tal/the
density decay exponent when applied to #he A reaction, as normally believed, but it predicts tiié decay
exponent. Last, the usage of the snmgllapproximation suggested by Mattis and Glag&av. Mod. Phys70,

979 (1998 is questioned if used beyond tier B reaction-diffusion model.
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[. INTRODUCTION +A reaction being the simplest example. Clearly, there is a
need to avoid perturbative treatmdtigether with RG and

A variety of methods have been used to study diffusiondook for alternative ways of calculation. Here, the focus is on
controlled reactiongsee, e.g., Ref§1—8] for review) rang-  the WBGA.
ing from the simplest pairlike or Smoluchowskii approach In somewhat technical terms, the basic idea behind
[9] to more sophisticated methods such as many particle deWBGA is to neglect the products containing three or higher
sity function formalism[4,5] and field theory{6—8]. Here, number of annihilation operators having nonzero wave vec-
we focus on the field theory. The field theory is very attrac-tor in the Hamiltonian. This procedure leads to a closed set
tive since it offers a systematic way to do calculation. How-0f equations for particle density and correlation functions.
ever, like in any other theory, one needs approximations t&olving these equations amounts to resummation of infinite
solve the problem. The particular way of making approxi-series of an diagrams. In this way WBGA appears as a non-
mate calculations will be analyzed, Bogolyubov’s theory ofperturbative technique which can be used to control infrared
weakly nonideal Bose gasgH0], referred to in the following divergences of perturbation series. In the following, we will
as the weakly nonideal Bose gas approximatiétBGA). distinguish between two types of approximations, referred to

Mapping of the stochastic dynamics to field theory can beas WBGA-I and WBGA-II, which result in linear and non-
carried out for latticd6] and off-lattice[11,9] models: The linear sets of equations of motion, respectively.
dynamics is governed by a second quantized Hamiltonian The WBGA was used to study reaction-diffusion systems
H(a,a", previously [8,9,12—14. For example,A+A reaction was
studied in Ref[12] andA+ B in Refs.[13,14]. These appli-
cations of WBGA on diffusion-controlled reactions, focussed
on highly nontrivial stationary states, characterized consider-
able amount of spatial correlations among reactants. Also,
and system configuration at timtecan be extracted from decay from such correlated states has been stydigld
state vectorV(t). All observables can be expressed as field The number of studies that employed the WBGA method
theoretic averages over products of creation and annihilatiois not that large and there is certainly a need to analyze this
operatorsa’ anda. method of calculation further. This is the reason why WBGA

Most often, the only practical procedure of solving field is considered in this work. The first goal of the present work
theory is perturbative calculation: diffusion is set up as thes to examine a very different situation from the one studied
zeroth order problem and reaction is perturbation. The probpreviously in Refs[12—14]. Performance of WBGA will be
lem is that in the most interesting regime, when the dimentested on models which have a trivial stationary state
sion of the system is low, below some critical dimension, theparticles in the systejtbut a nontrivial way of approaching
perturbation series diverges due to infrared divergences. Thauch a stationary state. In this work, initial condition is taken
infrared divergences are normally controlled in the frame-to be uncorrelated, Poisson-lik&6]. The three models will
work of the renormalization groufRG) technique. So far, be used as study caséB,the A+ A, (ii) the A+ B, and(iii)
such control exists only in a limited amount of cases,Ahe the ABBA model.

d
E\If(t)= —H(a,ah (1), (1)
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Both theA+ A and A+ B models have been studied pre- The stochastic dynamics of the most general two-species
viously by a variety of methods, and are the natural choicanodel is governed by the master equation of the system,
for testing the performance of any approximation scheme. A
large list of published work on these two reactions can be d B ,
found in Ref.[17]. aP(c,t)—g W, ..P(c ,t)—; W, .oP(c,t), (3

The ABBA model was formulated and studied in Refs.

[18,19 with RG technique using expansion, and numerical wherec denotes particular configuration of the system being
simulation. The model describes a mixture of the A, B defined by the set of lattice occupation numbers. Whe, ./
+B, and A+B reactions which occur at the same time. denote transition rate from stateinto c’, and can be ob-
There is a need to understand the model much better, ifhined from knowledge ob,, Dg, ando®”.

particular, evaluation of the particle density ratio foandB The master equatiof8) is the first-order differential equa-
particles is of great importance. The second aim is t0 aption and one has to specify initial condition in the form
proachABBAmodel, once again, but with a nonperturbative p(c:0) for all c. In the following it will be assumed that
method of calculation. P(c;0) is the Poisson distribution with averages denoted by
The paper is organized as follows. In Sec. || the model t0ny, andnyg for A andB particles, respectively.

be studied is specified in detail, and mapping to the field “ysjng standard procedurés.g., as the ones described in
theory is described. The outcome of this section is a Hamilrefs, [6,11,9,20), Eq. (3) can be translated into a
tonian wh|ch_ describes the most geperal two-specieschralinger-type equation(1) by using second-quantized
reaction-diffusion model. In Sec. Ill equations of motion for yamiltonianH =H,+ Hg whereH, describes diffusion and
density and correlation functions are derived using theq_ reactions. We find lattice formulation convenient, and in

WBGA method. In Sec. IV the WBGA approach is used t0pere formalism in Ref.20] is closely followed, which results
describe theA+ A model, with application of WBGA-I dis- i,

cussed in Sec. IV A, and application of WBGA-II in Sec.

IV B. Also in Sec. IV A equivalence of dressed tree calcula-

tion with WBGA-I is shown. Section IV C discusses modi- Hp=2, > [Daa)(a,—ae)+Dgbl(by—be)]  (4)
fication of Kirkwood superposition approximation in the x ex)

spirit of WBGA. In Sec. VA+ B model is studied by using
WBGA-I and WBGA-II methods. Finally, the analysis of the

most complicated of the three models studied here, the
ABBA model, is presented in Sec. VI. Working of WBGA-I Hg=
is analyzed in Sec. VI A and of WBGA-II in Sec. VI B. The

step by step merger of the WBGA and Kirkwood superposi-

tion approximations is discussed in Sec. VI C. The summary +bJb!)b,b, + > olP(al+bl+albh)a,b, . (5)
and outline of future work is given in Sec. VII. .y

1
AA/ ot ot Tt 1 BB .1 | ot
XE’y oy(@l+aj+ajanaa,+ 5 Xzy oR3(b]+b)

N| -

aI, a, b]:, andb, are creation and annihilation operators

Il. THE MODEL AND THE MAPPING for A andB particles, respectively;
TO THE FIELD THEORY

1 1
ay,a, =0y, [by,by1=06y,,
The mapping to the field theory will be carried out for the [ax.ay]=oxy, [Dxby]= Oy

most general two-species reaction-diffusion model. Phe [a,.bi]=[al,b,]=0 6)
+A, A+B, andABBA models will be obtained as special Xy xomyLm

cases. It will be assumed that particles cannot be created [1,1]=111 -1l denotes commutator. The observables
neither by external source, nor by birth process. In the mosigan be calculated as

general version of the two-species reaction-diffusion mode

each of theA or B particles jumps onto the one of the neigh- (O[n (t)]>:<0|0[(aT+ 1)a,Je MW, 7)
boring lattice sites with ratéor diffusion constantD, or X X X or

Dg, irrespectively of the occupation number of the site\here0(n,) denotes any function which depends on particle
where particle jumps to. Apart from diffusing, particles an-, mbers in an arbitrary way. Appearance aif+1 in the

nihilate in pairs. Particle sitting at the lattice sitex and . . . T
particle v sitting at the sitey are assumed to annihilate with "ght-hand side of Eq(7), instead of expected,, has to do
with the fact that bra-vectofO| is true vacuum state. This

pv is i i

rate oy . This Is schematically denoted as point is nicely discussed in Ref6]. The generalization of
Eg. (7) to more complicated form folO(ny,ny, ...) is

p(X)+v(y)—0, (20 trivial. The ¥, is given by

wherep,v=A,B andx,y=1,2,3... V. It is assumed that _ T T

there aﬁ;d_ lattice sites ix one direction, and fdrdimensions Vo= ex;{ nOAzx: &t nO'BEX: b 10)- ®

the total number of sites equals=LY. Labelsx andy de-

note lattice sites. In the following we compactify notation and use
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<f(ax,a;, . .)>E<o|f(axya;, e gy, (9) tionally invariant, which is the case for Poisson-distributed
particles, one has
wheref denotes any function of operatoas, a , by, and
bj for any x andy. 1 1
To avoid effects of boundaries periodic boundary condi- na(t)= V< > ax> = W(%% (15
tions are assumed and one can introduce Fourier transforms *
for operators,

(t) 1<Eb> ~(by) (16)
ng(t) == =— ,
a :i 2 IkX i E Ikx (10) B V<X X \/v 0
X
V 'k WK
where the sum ovex divided by \V was recognized ak
1 " 1 it =0 component of, andb,.
:W Ek ey, J_V Ek e by (1D The time derivative of,(t) andng(t) is controlled by
[ag,H] and[bg,H], respectively. Evaluating commutators
and reaction rates gives equations of motion,
1 . . INa AA AB
=\—/§k: of’eX,  gf'=2, gfre ik (12 St - | %0 NaNat g NANg
X
v_vith p,:_zzA,B.. For convenience, Fourier transforms are de- + l (O_QAFAA_I_ O_ﬁ\BFﬁB) 17)
fined slightly differently for operators and reaction rafjest V o
to reduce explicit occurrence &f in expressions later on
Also, it is useful to express Hamiltonids in terms of cre- ng
ation and annihilation operators i space. Starting from o o5®ngng+ a5 tnang
Egs.(4) and(5), and using Eqs(10)—(12) gives
1
- BB-BB ABT~AB
Ho=DaY Kala,+DgS Kbib+O(KY) (13 V& T o) 18
k k
and Whel’e
1 1 NA=(a@ ), TP=(bb ), TP=(ab ).
HR:W % ohhalay_ qaq+ >y qul ohtalalaqaq (19
To derive Egs(17) and (18) the sum ovelk is split into k
1
— > 02%bibe_qbq + 5y E o28blb/by_gbiq =0 andk+0 parts and assumption is made that0 com-
\/v ak ponents are nonfluctuating, i.€aoao)~(ao)(ao) and like-
wise for{aghgy) and(bgby) (thermodynamic limit
i (alah b +blbkf a,) Equations(17) and(18) involve correlation function$';”
\/V a.k -l 4 with p,v=A,B. Again, evaluation of[O,H] with O
1 =akad_g, akb_k, bkb—k giveS
+y 2 ohPafblag_gbyq. (14)

d
—TpA=—2D kT A—

g O'CAI’\'ZA-F E U'AAF

Please note that E4L3) is an approximation which is valid
for smallk. The form in Eq.(14) is exact. Once the explicit +2( b A oMYA A+ oL B (TEB+TAB)
form of H is known, one can proceed with calculation of
particle density, as shown in the following section.

+2(TO I’]BFAA (20)
lIl. EQUATIONS OF MOTION FOR DENSITY
AND THE CORRELATION FUNCTIONS P 1
Y rBB_ _ 2 BB.2 , — BB1-BB
Equation(7) summarizes how observables are calculated atrk 2Dk T o N +y qzk 7q Tk=q
within the field theory formalism. We continue with the spe- AB . AB
cific case of local particle densities,(x,t) and ng(x,t), +2(0g 2+ oy gl R B+ o Png (MR B+ TAR)
which can be calculated wittb=a'a, and O=b'b,, re-
spectively; using Eq.(7) one gets nA(xzt)=<ax) and +200Bn BB, (22)
ng(x,t)=(b,). Furthermore, if initial conditions are transla-
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IV. WBGA APPLIED TO THE A+A REACTION

Using Eq.(25) with 6=0 in Egs.(17)—(18) and(20)-(22)
gives equation of motion for the density

d 1
A= _(D.+Do)KT2B=| oBn e+ — AB[AB
gtk (Da s) KTy O Nalp quk Tq 1lk—q

AAL AA BB, BB
—[(op"+ o INat (0 + 0o )Ng

+0pB(na+ ng) ITRB— o B(NAT BB+ ngl'eh). (22 Z—?:—x[n%@] (26)

Equationg20), (21), and(22) are approximate since correla- and the correlator
tors of type(asaqa;) with k#0, q#0, andl+#0 are as-
sumed to be small. This is exactly the content of the WBGA.

A few comments about the inversion symmetiin k
spac¢ of I't” p,u=A,B are in order. By construction, A o
TpP(t)=T"%(t) for p=A,B since these functions represent The letterA has been dropped om, and Iy to simplify
correlations for same operator types. It can be checked th&otation, and likewisag, is shortened ta,. (t) is im-
the same property holds fd72®, provided it is true at  Plicitly defined by correlators,
=0. This is indeed the case since the initial conditions for

J
Esz—2Dk2Fk—)\[n2+(I)]—4)\an. (27)

. . 1
I'f” with pr=A,B are given by )=y > Ty(t). (28)
k+#0
I (0)=AgoVno,no,, p.v=AB, (23)  Thus equations above are meant to describe the model where
only one type of specie#, jumps on the lattice and particles
whereA, , denotes Kronecker delta function, have a chance to react only when at the same lattice site. The

equations above will be solved in the following two subsec-

1, x=y tions using WBGA-I and WBGA-II approaches.

Ayy= (24)

1o, x#y. A. WBGA-|

. AB | 1-AB . In the WBGA-I, when term proportional tal'y is
In the following, whenevei "+ Iy appears in the equa- gronned, Eq(27) can be studied analytically. Uncorrelated
tions of motion, we will use the assumption of inversion (Poisson-like initial condition is described byl (0)

symmetry and shorten the expression 2. = 8. oVnj and solution of Eq(27), with k+0, reads
The last terms in Eq920)—(22), which are products of '

density and correlator, and appear to be third order in density t 2 o

O(n3), lead to nonlinear equations of motion. These terms Ly(t)= —)\Jodt’e*ZDk O+ @(t)]. (29
come from averages of the tyge,aqa)) where one of the

{k,q,l} momenta is zero while remaining two are not. Beingplease note that thd',(t) is determined fromTy(t)
third order in density, it is tempting to neglect these terms. To=vn(t)2 (thermodynamic limit and not from Eq.(29).

test the effect of neglecting or keepin@(n®) terms two  Symmation of Eq(29) overk#0 and division byV gives
approximations will be studied, WBGA-I and WBGA-II,

with O(n®) terms taken away or kept in the calculation.
WBGA-I approximation results in a linear set of equations
which makes the analytical analysis possible. In the follow-

ing, the term WBGA will imply both WBGA-I and WBGA- where
.

CI)(t)z—)\fotdt’G(t—t’)[n(t’)erCD(t’)], (30

The equations of motion for the three models we wish to
study, theA+A, A+B, and ABBA are easily extracted
from the most general form given in Eq6l7)—(18) and
(200—(22). To obtain equations of motion for thABBA  was introduced. For large lattice size whe€r-«, expres-
model one simply set®,=Dg=D and sion above can be approximated as

e—2k2D(t—t’) (31)
k%0

<k

G(t—t')=

AP 4! —d/2

O'Q;,A:O'E),B:)\Axyy, O'QyB: 6Ax,y. (25) G(t t )~[87TD(t t +’)7)] y (32)
where =1/87D.

Thus particles have to meet at the same lattice site in order to Equations(26), (30), and(32) completely specifyn(t). It
react. Further, to obtain th&+ A model one simply set§  is not possible to solve them analytically, however, large
=0 (this decouplefA+ A andB+ B reactions, i.e., particles time behavior ofn(t) can be extracted. To do this we intro-
A andB move and react independently of each oth&o get ducep=n?+® and rewrite Eqs(26) and(30) as
A+ B model one takes =0 which rules out thé\+ A reac-
tion. In the following section we continue with analysis of an 33)

the A+ A model within WBGA framework. i —\e,
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t
<p(t)=n(t)z—xfodt’G(t—t’)q;(t'), (34)

which completely specify(t). Equationg33) and(34) have
been analyzed in the entirely different context?of B reac-
tion in Ref.[6] where it was shown that asymptotic density
decay is given by

n(t)~no(8wDt) 9. (35)

There is another way of extracting asymptotics which is
interesting to look at. By using Laplace transform it is pos-

sible to transform Eq9.33) and(34) into a single equation.
Laplace transform is defined as

X(s)= f:dte‘StX(t). (36)

For X=n, ¢ same symbol will be used for Laplace transform
as for the original function. The only exception to the rule
are two cases. FoK(t)=n(t)?, X(s)=n,(s), while for
X(t)=G(t), X(s)=9(s).

Taking Laplace transform of Eq34) one getso(s)
=n,(S)—Ag(s)¢(s), and combining it withe(s)=(sn(s)
—ng)/\ from Eq.(33) gives

1
No(S)=|9(s)+ +|[No—sn(s) ]. 37
Theg(s) is the Laplace transform db(t),
g(s)=(8wD) 927592711 (1—-d/2,5s).  (38)
I'(B,x) denotes the incomplete gamma function,
F(/B,x):J duutfe v, (39
X

The analytic continuation of (3,x) is possible. For nonin-
tegerB and B=0, I'(B,z) is multiple-valued function of
with a branch point az=0, and has no poles. Dividing by
g(s)+1/\, Eq.(37) results in

SN(S) —Np= — Ner(S)No(S), (40

PHYSICAL REVIEW E 69, 011106 (2004

-2

-25

1.5
log; o(t

FIG. 1. The numerical solution of Eq$33) and (34) for d
=1, 1.5, 2.5, 3(solid lines. The dotted lines indicate asymptotics
as given by Eq(35). Time is given in seconds and particle density
n(t) is dimensionless in units of particles per site. Initial densgy
was set equal to 1, and reaction rate 1 s was used.

shown that WBGA-I is equivalent to the dressed-tree calcu-
lation. Also, the following solution to Eq42) was suggested
[21]:

I'(1-d/2)?

—d/
T—d) (8wDt) 92,

n(t)~-— (43

However, Eqs(33)—(34) and Eq.(42) are fully equivalent
and expressions in Eq$35) and (43) should be the same.
Clearly, studieq20] and [6] suggest contradictory results:
Ref. [20] argues that the dressed-tree calculation givs
decay exponent for particle density, while R] argues for
thed/4 decay exponent. Solution to this paradox is discussed
in Appendix A where analysis of Ref20] is repeated. It is
shown that in Ref[20Q] it was incorrectly concluded that
dressed-tree calculation results in & exponent, which
basically came from balancing wrong terms in Laplace trans-
formed version of Eq(42).

Thus the first main finding of this section is that WBGA-I

wherel¢(S) denotes the Laplace transform of the effective predicts wrong density decay exponent ot A reaction. It

reaction rate,

Ner(S) = (41)

1+Ng(s)’

Finally, taking the inverse Laplace transform of Ed40)
gives

an t
—:—f dt' Neg(t—t")n(t")2 (42)
ot 0

Equation(42) was obtained in Ref20], in the context of
A+ A reaction, through a diagrammatic technique and re
ferred to as thaelressed-treealculation. Thus here we have

gives exponent value af/4 instead ofd/2. The second find-
ing is that the dressed-tree calculation suggested in[Ré¥.

is equivalent to WBGA-I(and fails to describé+ A reac-

tion).

Figure 1 offers graphical representation of these results.
The numerical treatment of Eq&3) and (34) confirms the
asymptotic decay given in E¢35). Equations(33) and (34)
were solved previously numerically in R¢8]. In here, the
features of the decay curves are somewhat different from the
ones obtained in Ref6]. For example, curves shown in this
work have a concave forrthent upwarg, while curves in
Fig. 1 of Ref.[6] are convexbent downwar@ias if asymp-
totics have not yet been reached. Also, in here, there is no
intersection of curves, which can be found in Héf. These
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differences could come from the numerical treatment. Thenodification of WBGA which will provide correct result for
detalls of numerical treatment used in this work are shown irthe A+ A model? This question will be answered in the fol-
Appendix B. lowing subsection.

In the following subsection it will be shown that, in the
case ofA+ A reaction, weaknesses of WBGA-I method ex- C. The hybrid of the WBGA and Kirkwood superposition
tends to WBGA-II level. approximation (WBGA/Kirkwood )

To see how to improve the WBGA one has to clarify what
B. WBGA-II went wrong in the first place. We start from the problematic
When termnT", is kept in Eq.(27), equivalent of Eq(34)  equation Eq(20) which become$27) when terms withofe®

reads are set to zero. To trace why the WBGA fails it is useful to
rewrite Eq.(20) as it looks one step before the WBGA is
t _ o
(p(t)zn(t)z—)\f a1 (6t e(t)), (44) made, and we keep only terms describfg A reaction:
0
J 1 .
— I =—2DKT—|on?+ 5 2, ol o|—T®,
while Eq. (33) stays the same. THét,t') is given by gt S Y q;k 4 k-a
(49)
t
I(t,t’)=G(t—t’)exp{—4)\f dt"n(t")|. (45) where
t/
: . 1
The asymptotics of Eq44) cannot be extracted by Laplace re=—_> oq({a_ay_qaq) +{(ak@_g_qaq)) (50)
transform, and it is more convenient to use the approach of WG

Ref. [6]. For | t, Eq. (44 b imated b . . :
ef. [6]. For larget, Eq. (44) can be approximated by is the focus of the present subsection. In technical terms, the

o(H)~n(t)2—1(t,0)Z(1), (46) usage of WBGA can bt_a translat_ed into approximating a three
point density(asaya,) in a particular way. In the case of
where Z(t)=\ [dt’ ¢(t"). This step is valid provided two WBGA-| one simply takes
conditions are satisfied. First, the teft,t’) has to vanish
as time differencet—t’ grows. Second, the integral
Jodte(t) has to be finite. Using Eq(33) one getsZ(t)
=ng—n(t)~ny and Eq.(46) becomes

(aklakzak3> =(aa,a, =0, (51
while in WBGA-II one assumes

. _
(&, 8k, k)~ Ak, Ak, 00k, 080 T Ak, Ak, 04k, 080( 8k, 3k,

an
— ~—\Nn2+\I(t,00n,. (47 — —
ot 0 + Ak, 0Ak, Ak, 0Bof Ak, Ak,)
The equation above is solved with the assumption that as- +Kkl OKKZOAKS 0Ao( @y A,), (52

ymptotically n(t) ~.A/t, which is checked self-consistently
at the end. Using postulated asymptotics foone can see
from Eq. (45) that I(t,0)~constxt™ (@244 Assuming
that

where the notatiorKk,q= 1-Ay 4 was introduced. Inserting
Eqg. (52 into Eq. (49) gives the terms describiry+ A pro-
cess in Eq(20). It is useful to transform the approximation
above into thex space to understand the nature of approxi-
1(t,0) mation better. The inverse Fourier transform of E§2)

- H t_)my (48) H
n(t)2 gives[22]

~n3 _n2 _n2
one can solve Eq47) in the form dn/dt=—\n?, and get (ax@ya;)~n°+n({(aay) —n%)+n((aa,) —n°)

A=1/\. Assumption (48) is correct provided Zd/2 +n((ayaz>—n2). (53
+4NA=d/2+4, which is true for anyd. This shows that
n(t)~1/(\t) is the asymptotic form for the solution of Eqs. By looking at Eq.(53) it is possible to understand why the
(33) and(44). This means that the last termI{,) in Eq. (27) WBGA fails in the case ofA+A reaction. Equation(53)
only influences intermediate behavior whea not too large.  suggests that the WBGA is somewhat equivalent to the ad-
For larget, WBGA-II gives exactly the same asymptotics as ditive expansion of correlation functions. It has been argued
the pure mean field treatment. that such an additive approximation is inferior to the Kirk-
Thus main finding so far is that both WBGA-I and wood superposition approximatidd,5], and analysis was
WBGA-II fail to describe theA+ A reaction. This is some- done for fermionic models, but is likely to be valid for
what surprising as even the simplest pair approach, e.dosonic models as wellat least for the ones considered
Smoluchowskii method, describes the exponeri ©fA cor-  here. Clearly, to correctly describ&+ A reaction one has to
rectly. ClearlyA+ A reaction cannot be viewed as a weakly use Kirkwood superposition approximation. How can one
interacting Bose gas. The question is what is the minimunimplement such an approximation for bosonic models?
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The usage of the Kirkwood superposition approximation
in the context of reaction-diffusion models has been thor- G~
oughly tested in the case of fermionic representation, where
double occupancy of lattice sites is not allowdadr a nice
review see, e.g., Ref4]). In such a case the Kirkwood su- + 2 oqlo(T g+ Tl gt Tlq-) |, (59
perposition approximation is expressed through q#k

o (T3l + TR

n3v?

<nxnynz>~<nxny><nxnz><nynz>/n3, (54) where terms of the typé',I',I'; with k,q,I#0 have been
neglected.
and it was shown that the corra®2 density decay exponent ~ The first term on the right-hand side of E@8) can be
results from this procedure. However, when multiple occulleglected since it leads to mean field behavasr shown in
pancy of lattice sites is allowed, as is done here, one has t8€C- IV B. The second term can be absorbed into one of the

be careful. Another way of carrying out the Kirkwood super-three terms under the sum sign e.g., under the first term.
position approximation would be to take Second and third terms under the sum sign, couple correla-

tion functions in a nontrivial way and are neglected in the
following for simplicity reasons. Wit y=~n?2V, and apply-

1
(asaya,)~ —S(axay)<axaz><ayaz>. (55  ing the recipe just described gives
n
(3) 2 ) 1
In the case of fermionic representation there is no ambiguity M~ =Ty oon™+ q;o oql'q]s (59

whether to use Eq54) or Eq. (55) as they are fully equiva-

lent, owing to the fact that field theoretic averages of typeynich is midway between the WBGA-[Eq. (52)] and Kirk-
(nyn,) are not possible in fermionic representation, howeveryyqqq superposition approximatidiq. (56)]. It is interest-
they are bosonic where a choice between E8#. and(S5)  jng to contrast the equation above with the shortened Kirk-
has to be made. o _ wood superposition approximation discussed in Ref§] in

By studying Eqs(54) and (55) aroundt=0 it is possible  the context of fermionic models. There is some similarity,
to see that qpprox_lmatloﬁ55) is more reasonable one. Such p; descriptions are far from being identical.
an analysis is oml_tted to save the space. Thus, in here, we Using approximatior{59), referred to in the following as
argue that Eq(55) is a more reasonable platform for carry- he WBGA/Kirkwood approximation, to decouple three body

ing out the Kirkwood superposition approximation in the gensity, and a particular form far* used throughout this
case of bosonic field theory. Also, for on-site reaction modekg tion gives equations of motiony

as studied here, it is crucial that averages of the tygea,)

are treated correctly. Therefore, in the following, E§5) J 2

will not be used directly, but will be modified further in the il —2DK’T =N (n?+®)— 2T, . (60
spirit of the WBGA, accounting for the thermodynamic limit.

The Kirkwood superposition approximation in E§5) is  which should be contrasted with EQ7). The most conve-
rephrased in thé& space which givef23] nient way to solve Eqs(26) and (60) is to introducey, as
I'=n?y, and n?+®=n?y where y=1+ (1V)=Z,.oXk>
and y, with k=0 is set equal td/ and does not change in
time (thermodynamic limit Applying change of variables
just described modifies E¢26) into
To get the improved form for three body terms one inserts

O(kytko+ka)

<a"1akzak3> = n3\y32

2 Nl P (56)

Eq. (56) into Eg. (50), leading to %n(t): — k(Hn(H)?, (61)
. 2
1“(3)%W E gl T Tk qe - (57) where effective reaction rate(t) =\ x(t) was introduced.
n°ve aql Same change of variables transforms Hf) into
The expression above was obtained by using symmetry prop- d )
ertiesI',=I"_, andoy=0_,. Also, upon inserting E¢(56) gt Xk —2Dkx— My (62)
into Eq. (50), the two terms on the right-hand side of Eq.
(50) contribute equally resulting in factor 2 in E7). Equation(62) can be solved for alf, andk+ 0 [pretending

In the spirit of WBGA the terms in E¢56) which contain  that y(t) is known], and after summing ovek#0 one gets
large number of correlation functions wikhvector different  the following integral equation:
from zero are neglected. Also, care is taken to account for the
thermodynamic limit, wher&k=0 components are treated
separately. This is done in two stages, first sum apsrsplit
into g=k and g#k parts, and then for each of the sums
various contributions from sum ovémre distilled to extract The solution of the equation above can be found by a
nonfluctuatingk=0 operators. This gives Laplace transform which gives

t
X(t)=1—)\Jodt’G(t—t’)X(t’). (63)
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S EETES VO TN (64
Also, one can integrate E¢61), which gives
_ No ) — ! ’ ’
n(t)_—1+n0I(t)’ K(t) fodt K(t). (65)

It is not possible to obtain a closed expression #6t) and
n(t). However, the asymptotic form of(t) can be ex-
tracted.

Inserting smalls expansion ofg(s) [see Egs(A4) and
(A5)] into Eq. (64) gives

r (87D dr2
B0~ ar g<z

r'a-dr)

8wD
~ ——————— d=2
S I PP (69
A

—s_l, d>2

| T+29(0)

PHYSICAL REVIEW E 69, 011106 (2004

the procedure outlined above leads to the equations for par-
ticle densities

an
— == 8(n’+dy),

0 (69
where®. is given by theAB correlation function,
1 AB
O (t)=5 2 8. (70
V (Zo

Equations for correlator§,=I't*=TE? and I'{=T}? are
given by

J
s 2Dk2) [i=—d8(n*+dy)—2on(T+T5), (70

(72

d
E+2D|<2)rk= —26n(T+Tp).

The most convenient way to solve the equations above is to
diagonalize them by subtraction and addition. The final result
is that correlations oAB pairs are governed by

for s—0. Taking the inverse Laplace transform of the equa-

tion above gives leading order behavior for the effective re-

action rate constant,

d/
( (87D)%? d2-1  g<2
I'(1—-d/2)r(d/2) ’
87D
K ()~ S nt/y’ d=2 (67
A da>2
L 1+Ag(0)’

whent—oco. To find the inverse Laplace transform efs)
for d=2 [second line of Eq(66)] is somewhat involved;
please see Appendix C for details. Finally, inserting &q)
into Eq. (65) gives the following asymptotics:

['(1-d/2)T(1+d/2)(87Dt)"9? d<2
|
n87TDt' d=2
n(t)~< 8wDt
1
X+g(0)}[l, d>2,
(68)

where g(0) entering in the third row can easily be found
from Eq. (A4). Thus, in here, it was shown that Kirkwood

<I>C(t)=—5ftdt’[G(t,t’)+I(t,t’)][n(t’)2+<bc(t’)]
0

(73
and forAA (or BB) pairs as

P(t)= 5£dt’[G(t,t’)— L(E,)IN(t") 2+ D(t")].
(74)

The I(t,t") appearing in Eqs(73) and (74) has the same
form as in Eq(45) with trivial change of into §. The same
type of analysis as in Sec. IV B leads to the conclusion that
approximation G(t,t")+I1(t,t')~G(t,t’) can be used,
which in turn leads tal/4 density decay exponent. Interest-
ingly enough, both WBGA-I and WBGA-II approaches lead
to the correctd/4 exponent when used to solve the-B
model.

In some sense the WBGA approach seems to be suited
rather well for theA+ B reaction. Quite the contrary can be
said for theA+ A reaction as shown previously. To under-
stand the working of WBGA on the more general model the
ABBA model will be studied in the following section.

VI. WBGA APPLIED TO THE ABBA MODEL

superposition approximation reproduces correct density de- The ABBA model was suggested in Refd8,19. The

cay exponent/2 when implemented following Eq55).

V. WBGA APPLIED TO THE A+B REACTION

mean field analysis of this model predicts that minority spe-
cies has to die out asymptotically(t)=ng(t)/n,(t)—0 as

t—oo, minority species being the one with smaller concen-
tration att=0. (For convenience we chose B species to be

Equations of motion for density and correlation functionsminority, nga>ngg .) However, fluctuations lead to quite re-

describing theA+B model result from Eqgs(17) and (18)
and Egs.(20)—(22) by using Eq.(25) with A\=0. For sim-
plicity, we focus om,=ng=n case and omit labek andB.
Also, as in the preceding sectiong=nga=ngg. Applying

markable survival of minority species. Below critical dimen-
sion u(t)—const (provided Dp,=Dg, for Dp,#Dg one of
the species dies oli24]).

There are two reasons for studyi®gBBA model here.
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First, the calculation of the asymptotic particle density ratioand

is still an open question. The previously useexpansion t

technique could not reveal the form afec). u(«) has an =nn-—A f dt'G(t—t’ t!
interesting property that it depends both on reaction rates and Cor=TpT ™ Ror | ( Jept),
initial particle concentrations, while individual reactions do

not [25]. Thus, in here, calculation afi(«) is attempted A, =(\A, + 5Kp,v)’
again, with a different calculation scheme, the WBGA
method. Second, th&+A and A+B reactions have been ¢, =n,N,+P,, (83

studied in previous sections but now they are allowed to

occur simultaneously. It is interesting to see how the WBGATOr p,v€{A,B}. To solve Eqgs(81)—(83) it is possible to
approach performs in such a situation. employ the same technique as in Sec. IV B. The equations

We start from equations of motion given in Sec. Il which @P0ve can be approximated by

describe a very general two species reaction-diffusion model. O~ —G(t.OVT. (t “AB 84
Assumptions in Eq(25) describe the content of theBBA NNy = GO, piv=A, &9
model. Using Eq(25) in Egs.(17) and(18) gives with

J ) e (t

E”A:_()\nA"F 5nAnB+)\¢AA+ 8¢AB)' (75) Ipy(t)EApV dt (va(t ), p:A,B (85)

0

J By integrating Eqs(81) and(82) a useful relationship can be

EnB:_()\n%—i_&nAnB_F)\(I)BB—" 0P pp), (76)  derived forZ,,, p,v=A,B,
where Z,,(1) + Zag(t)=ng,— N, (t)~ng,, p=A,B. (86

1 Using Eqs.(84) and (86) gives
®,=y 2 T pv=AB. (77) (Na+ng)®=~G(t)(Noa+Nog), (87)

2 2 B
Also, equations for correlatof@0)—(22) simplify to Na—Ng=~G(t)(Noa—Nog)- (88)

Solving the equations above leads to

1% +
—TpA=—2DK A= N (g + P ap) —2(2NNa+ Sng) T4
0 n,(0)

n ~—_—
—26n,I08, (79 " noatnog

(87Dt)" %, p=A,B. (89)

P According to WBGA-I both particles decay with tlt#4
EFBB: —2DK’TPB—\(n3+ ®gg) — 2(2\ng+ npy)TEB exponent and amplitudes given above. The WBGA-I predicts
the same decay exponent as for the preA model. As in
_ AB the case ofA+ A reaction, the value fod/4 exponent ob-
26ngl'y™, (79 . . : :
tained here is not correct. The computer simulation and
e-expansion analysis of this reaction sugge& exponent

J
EF{?B: —2DKT( B— 8(nang+ ® o) — (2N + ) (Np [18,19. To see what happens whér(n®) terms are kept in
Eq. (78)—(80) we proceed with WBGA-II calculation.
+ng) T B= 8(NaTEB+ngleA). (80)
B. WBGA-II
The equations above will be solved in the next two subsec- |n the WBGA-II, when all terms are kept in Eq&78)—
tions within WBGA-I and WBGA-II approaches. (80), it is useful to rewrite these equations in the vector form
A. WBGA-| e I N@aa
. 3 4 2 BB | _ BB
In the framework of WBGA-I all seemingl®(n®) terms E+2Dk N l=—Pt)| '™ | —| Nese |,
of the type n,I'y with p=A,B and v=AAAB,BB are FCB 1ﬂ/k«B Soag
thrown away in Eqs(78)—(80). Following steps, similar to (90)

those of Sec. IV A, gives
where the matriXP is given by

J
ZiMA=— (Npapt 6@np), (81 AN+26u 0 26
P=n, 0 ANu+26 25U
g - _ su 5 (2N + 8)(1+u)
i (Npggt doap) (82 1)
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with u=ng/n,. character of Eq994) and(95). Following the same steps as
Vector equation(90) is very hard to solve analytically. in Sec. IV B, Eq.(94) can be approximated as
However, there are some guidelines how to extract late time

asymptotics. At the WBGA-I level it appears that tABBA PAA n,"; Tan

_model and the\+ A model are very §|m|lar. In the following ege|~| nd | -3t0]| Zes |. (97)
it will be assumed that such similarity can be extrapolated to

the presently studied WBGA-II level. This implies that mean ¥AB NaNg Zas

field behavior should be expected from Ef0).
To get the feeling of what follows it is useful to analyze
Egs.(75) and(76) at the mean field level, where fluctuations

Now we proceed to show that, as in the case of(B6), the

second term on the right-hand side of E§7) can be ne-
_ . > glected.

are neglected by settingb,, to zero; ny=—(Any Matrix II can be diagonalized dd-U=U-Q. The Q is

+8nang), andng=— (An3+ dnang). The mean field equa- diagonal matrix containing eigenvalues

tions can be solved approximately for lafg@lease see Ref.

[19] for detaily and one obtains w1=4, 0;=2y, w3=2+y (98)
1 Nog and matrixU contains eigenvectors
nAN)\_! nBN—’! (92)
t [NoaNt]” 1 Y 2y
provided y=8/A>1 andnga>nog. For =\ (y=1) or y=2 72
Noa=Nop the solution is trivial, and it can be easily shown U= 0 y—2 0 (99

that in such case th& BBA model belongs to th&+A
universality class. These simple cases are not considered
here. Initial imbalance in particle concentration leads to
faster diminishing of minority species, i.e.u(t)
=ng(t)/n,(t)—0 ast—o given 0<u(0)<1.

In the following we assume the mean field an$8® and
try to solve Eq(90) with it. The validity of such a mean field £(t,00~constrInt, (100
ansatz will be checked self-consistently at the end. For large
times, and with mean field behaviou-0), the matrixP  and using Eq(100 in Eq. (95) gives
can be approximated by

Y
0 1 1

Inserting Eq.(92) into Eq. (96), and assuming large leads
to

t™4 0 0
4 0 2 J(t,00~constxt~ 92yl 0 t=%7 0 UL
PN)\nAH, II= 0 2’)’ 0 . (93) 0 0 t7(2+}/)
0 vy 2+vy (101

The fact thaP (in the approximate forpnis a constant matrix  Finally, the second term on the right hand side of EY)
multiplied by a time dependent function implies that can be calculated explicitly. Inserting EG.02) into Eq.(97),
[P(t),P(t')]=0 (dot over symbolP denotes time deriva- and assuming thaf,, p,»y=A,B are constantfcan be
tive). This being the case, E¢0) can be treated as a scalar checked for self-consistency at the @nesults in
equation and a calculation similar to the one in Sec. IVB

giVeS QDAA%ni'f't_dlz(clt_wl"‘Czt_w2+03t_w3), (102)

ean(t) na(t)? : Noaa(t’) pga~ng+t Y ez, (103
t)|=| ng(t)? |- ' I A t’

pos(t) 07 |- [ avaten| resslt) |. oot e, (108
eap(l) na(t)ng(t) deap(t’)

(94)  The explicit form of constants;, c,, C3, C4, Cs @andcg is
not interesting since the aim is to show that terms containing
these constants are subleading to the mean field terms. By
"N , _ , studying the equation above row by row, it is possible to
) =Gt t)exd —&(tt) T ©9 show that fory=1 the terms involving constants are sub-
and leading to the mean field terms.
To see that the terms originating frahft,0) are sublead-
t ing, one really has to calculaté explicitly. For example, not
f(m')z)\ft,dt"”A(t")- (96)  knowing that the contribution frora, is absent in Eq(103),
there would be a need to compare?” [asymptotics of the
Please compare Eq&t4) and (45) and Eqs.(94) and (95).  mean fielch term in Eq.(103)] with t~(¥2*4) [coming from
They are very similar, the only difference being in the matrixJ(t,0) and w, eigenvalu¢ One would conclude that

where matrixJ(t,t’) is given by

011106-10



APPLICATION OF BOGOLYUBOV'S THEORY @ . .. PHYSICAL REVIEW E 69, 011106 (2004

= &I\ cannot be too large if mean field asymptotics is to hold. To solve the WBGA/KirkwooflAA,BB,] set of equa-
In reality, there is no such bound on rai\ since eigen- tions, it is useful to employ similar notation to the one used
value w, does not appear in Eg103), but this can only be in Sec. IV B:
seen after an explicit calculation.

The main finding so far is that WBGA describes then IR'=n,n,x¢” (109
ABBAandA+ A models in the same way. For both models
the WBGA-I (WBGA-II) predictsd/4 (mean field density
decay exponents. In the following section an attempt will be

made to improve the WBGA method in order to obtain the =1+ l Xt (110
correct value of density decay exponent for tABBA V 7o
model.

with p,v=A,B. Using Eqs(109 and(110 in Egs.(81) and

) o ; (82) results in
C. WBGA/Kirkwood approximation applied to A+A

and B+B sectors

—np= (111

2

Unfortunately, WBGA cannot give any reasonable predic- ot ~(AMAXaAT NANBXAB),
tions about asymptotic value for particle density ratigm),
as it cannot even get the exponents right. How deep does the d 5
weakness of WBGA go? What needs to be changed in equa- —:Ns8= ~(ANgxsa+ SNANBXAB)- (112
tions of motion(78)—(80) in order to get the correct decay
exponent? To answer these questions we begin by modifyingnplementing the same notation in Eq407), (108, and
more and more terms in Eq&/8)—(80) by using the recipe (80) gives
from Sec. IV C, i.e., the WBGA/Kirkwood scheme. It was
already remarked in Sec. Il that contributiondHalescribing

_ 2 A _ _ AA
different reaction sectors enter additively, and this feature is gt —p X" =~ 2DKB = A xaa— 20n8(1 = XaB) Xi
reflected in equations of motiof¥8)—(80), which opens a AB
way for such incremental changes. —20Npxi (113

We begin by modifying terms describing+A and B
+ B reactions in equations of motion fétA andBB corre-

BB BB BB
lation functions. If one is to follow the procedure described gt Xk = —2Dk%x "~ A xBa— 20NA(1~ XaB) Xk
in Sec. IV C, theO(n®) term in Eq.(78) has to be modified AB
as —28Npxi, (114
2
47\”AF/kAA—’27\F/kAAnAniA (105 %XQB: —2DK2x kB~ Sxap—[ANA(2— xan) +ANg(2
A
and likewise for Eq(79), —xee) + (Na+Ng) (1= xap) Ixk— S(Naxi”
+nexe®). (115
BB (I)BB
ANngl BB 2\TPE ——— (106) , , , ,
nB The numerical solution of the set of equations above is
shown in Fig. 2(dotted ling. The full line is a result of
This gives a new set of, hopefully better, equations: Monte Carlo simulation where particle densities are obtained
2 as ensemble averages over 500 r(sisulation is repeated
—FAA— 2Dk2FAA N2+ p) — ZAFAA Na+®Pan 500 times with a shift in the random number genenattir
ot AT TAA Na can be seen that WBGA/Kirkwopd A, BB, ] approach, as
AA AB expressed in Eq$113—(115), does not describe theBBA
—28(ngl' "+ nal' ™), (107 model properly, not even qualitatively, since minority species
die out faster(the particle density ratio grows to infinjty
bgp while the simulation shows that density ratio should saturate

2
+
Jpee__ 2DK?IEB—\(nd+ Dgg)— 2>\FBBB”—
B

ot to a constant valuéfull line). The inspection of individual

density decaygnot shown herereveals that the equations
—28(nalBB+ngl'e®). (109  above correctly describe the decay of majority species, i.e.,

na~constxt~ %2 but fail to describe the decay of minority
Equation(80) stays the same, although E®O) contains a specieqng.
term proportional ton which should be modified if one fol- To continue this line of incremental changes, in the fol-
lows the principle outlined above. However, at the momentjowing more terms will be modified by using WBGA/
Eq. (80) will not be changed. The set of equations just de-Kirkwood approach. The dash-dotted line in Fig. 2 shows a
scribed can be conveniently referred to as WBGA/solution of equationgnot shown hergobtained from modi-
Kirkwood AA, BB, ]. fying A+ A andB+ B reaction sectors using shortened Kirk-
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6 i are the same as in Eq4.13)—-(115) the only difference being

: in the fact that all seemingl®(n) terms drop out. Thus in
Egs. (113—(115 only diffusion term and terms\yaa.,
Mxgg, and Sxag are kept in Eqs(113), (114), and (115
respectively. These equations are not shown explicitly to
save the space but it should be clear how they look like. The
numerical solution for this set of equations is shown in Fig. 2
as a dashed lin¢lt is possible to analytically extract density

L (4]
T T

n A(t)(inB(t)

N

..... WEGA/Kitkwood[AA, BB ] decay asymptotics for this truncated set of equations which
1t =+ WBGA/Kirkwood[AA, BB, AB, givesna(t)~constxt~ 92 andng(t)~constxt~92]
A awoodull The set of equations where WBGA/Kirkwood superposi-
%95 4 os 05 1 15 2 25 3 tion approximation has been applied fully agrees with the
logy4(t) numerical simulation much better than the ones obtained

from partial implementation. This is a strong indication that,
at least for theABB A model, the WBGA/Kirkwood approxi-
mation is superior to the WBGA method. For example, in
Fig. 2, the trend in all curves improves as the content of the
WBGA/Kirkwood approximation is increased. As the goal of
the present study is to understand the WBGA method better,
the more thorough analysis of t#eBBA reaction based on
the Kirkwood superposition approximation will be presented

1
-
o

o N WBGA/Kirkwood[AA, BB, |
nB;WBGA/Kirkwood[AAlBBA]

mn N A;WBGA/Kirkwood[AAlBBkAB?V]

a0, (0]

9251~ ng;WBGA/Kirkwood[AA, BB, AB,] in a forthcoming publication.
= u N, WBGA/Kirkwood[full] N
=8f. . nB;WBGA/Kirkwood[fuII] ‘,‘
5.5/| mm— nysimulation N
| N ng;simulation \,\ VII. CONCLUSIONS
_4 I I I I 1 1 1 1 e L J i .
-2 s -1 08 '°3{§(t) v o2 283 The workings of the WBGA were analyzed on reaction-

diffusion models with a trivial stationary state but nontrivial

FIG. 2. The numerical solution of Eq$111)—(115 for d=1 dynamics in approaching this state. Admittedly, in doing so,
with increasing the amount of WBGA/Kirkwood approximation the WBGA approach was taken out of the original sphere of
embeddeddotted, dash-dotted, and dashed lines; please see the teapplication with focus on highly correlated stationary states.
in Sec. VIC for details The full curve is the result of a Monte The A+ A, A+B, and ABBA models were used as test
Carlo simulation(average of 500 runs Parameters used ate  cases. TheA+A and A+ B are excellent test models since
=1000, na(0)=2, ng(0)=1, A=1, and5=2. Panel(a) shows  they are well understood. In the case of &kBBAmodel, an
particle density ratio, panéb) shows individual densities. In both attempt has been made to calculate particle density ratio
pane]s lines are Qenoted in the same way. P& ehows thgt on.ly u(t)=ng(t)/na(t). Also, some seemingly independent cal-
full implementation of the WBGA/Kirkwood approximation cyjation schemes available in the literature were related to
scheme qualitatively describes the density ratio. In pénkeit can each other.
E(ierk\?v?)?)rc]i[ftjhlla]t 2(I3|rr2;;5rommg.tuinthscr;emes, ?part. fr.(t)m WB,GA/ It was shown that the WBGA fails to describe the- A

KWOOCLIUTL, ctly predict the decay of majority SPECIES 1,4 4el, on both WBGA-I and WBGA-II levels. On the other
while failing to describe minority species. WBGA/Kirkwoddll ] hand, it describes tha+ B reaction well, out of pure coin-
describes both well. Both panela) and (b) show that increasing .~ . . ! .
the amount of WBGA/Kirkwood in equations leads to successivelyCldence so it seems. The fa!lure of .the WBGA to describe the
better agreement with the simulation experiment. A+ A model was analyzed in detail at two stages. .

(1) It was shown that the WBGA amounts to approximat-
wood superposition approximation in E¢0) describing ing the three-particle correlation function in a particular way,
time evolution of AB correlation function. These equations which corresponds to additive approximation of correlation
will be referred to as WBGA/KirkwoddAA,BB,AB, ]. functions, being already criticized before in the context of
Equations obtained in this way are identical to EG43—-  fermionic models which allow for single occupancy of lattice
(115 with the only difference that Eq.115 changes in a sites only.
way that terms proportional to drop out. In Fig. 2 it can be (2) To cure the deficiency of the WBGA method, a way of
seen that even in this case the density ratio curve climbs tapproximating three-particle correlation was suggested in the
infinity, which is not the correct behavior, but the overall form of Kirkwood inspired the WBGA approximation, re-
trend gets better as the dash-dotted curve lies below the ddierred in the text as the WBGA/Kirkwood approximation. To
ted one and is pushed towards the simulation curve. the best of our knowledge no such approach, nor any other

Finally, the equations of motion were studied where everform of the Kirkwood superposition approximation, was ever
the 6 terms(describing theA + B reactions were modified in  used to describe bosonic models where multiple occupancy
equations of motion for all correlation functions. This set of of lattice sites is allowed with extremely local on-site reac-
equations will be referred to in the following as tions. It was shown that the WBGA/Kirkwood approxima-
WBGA/Kirkwood[ AA, ;BB 5,AB, 5], or even more briefly tion suggested here leads to the corm/& decay exponent
as WBGA/Kirkwoodfull]. Equations obtained in this way for the A+ A reaction.
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The equivalence of the WBGA-I and dressed-tree calcuwhere each site can be at most occupied by one particle.
lation of Ref.[20] was demonstrated, for the case of the What would be the efficiency of these approximate schemes
+ A reaction. However, it can be easily seen that this equivafor these systems? The hard-core constraint may have a dra-
lence holds for any model where particles annihilate in pairsmatic effect on the dynamics in some cag@§]. In one
Furthermore, it was shown that for the+ A reaction the dimension it is possible to reformulate reaction-diffusion
dressed-tree calculation results in W& density decay ex- systems of hard-core particles in a spin language and then,
ponent, and the error in Ref20] was corrected. In such a via a Jordan-Wigner transformation, adopt a fermionic field-
way seemingly contradictory claims of Ref20] and[6] theoretical formalism(for detailed instructions on carrying
were sorted out. out this procedure see, e.g., RE27]). The present scheme

Also, it was shown that the WBGA cannot describe thecould be applied to the averages involving products of fer-
ABBAmModel, very likely, for the same reasons as fhe A  mionic operators, once the Jordan-Wigner transformation has
model since these two models fall in the same universalitppeen made.
class. In the case of theBBA model the WBGA-II predicts To conclude, it would be interesting to have a relatively
faster vanishing of minority species, which is suggestive ofsimple approximation at hand, not far away from the pair
the (A+B)-like behavior rather than the behavior of the approximation, which could be used to extract qualitative
ABBA model as found in Refd.18,19. This bias towards asymptotics for an arbitrary reaction-diffusion model, irre-
A+ B type behavior is very hard to get rid of as successivelyspective of which model one studies. Clearly, such a program
correcting more and more terms in equations of motion foris ambitious since in reality one is bound to make an ap-
the ABBA the model by using the WBGA/Kirkwood ap- Proximation which is related to the particular model but,
proximation results in faster vanishing of minority species.nevertheless, it is worth a try. The+ A andA+ B reaction-

The vanishing of minority species persists until all terms arediffusion models (or combination of them are excellent
modified by the WBGA/Kirkwood method. The WBGA sim- benchmark models and any successful approximation should
ply emphasizes thA+ B reaction sector too strongly in the strive to describe these reactions properly. The present study

ABBA model. is an attempt in this direction.
The findings of this work suggest that the formalism em-
ployed by Mattis and Glasser in Rb] where a smalhg ACKNOWLEDGMENTS

expansion is introducedand applied to study thé+B i
mode) is somewhat questionable. This procedure works on | would like to thank Professor Malte Henkel and the staff
the A+ B model, but might not work for other models. It can &t the Laboratoire de Physique des Materiaux, Universite
be shown(by rescalinga’n,—a' anda/n,—a) that for the Henri PoincareNancy |, where part of this work was done,
type of models studied here, the smadl approximation of ~for warm hospitality.

Ref. [6] amounts to taking away three body terms in the

Hamiltonian given in Eq(5) or (14) (e.g., operators of the APPENDIX A: TERM MATCHING

type a'aa and likewise any mixture o or b operators

Neglect of these terms amounts exactly to the WBGA-I ap- h Herﬁ, th? C%Iclulatlontdone n R@t?] v'\glll be trﬁpeatledltc;_
proach, which is criticized here. For these reasons, a swpall show how 1o balance terms correctly. AlSo, the calculation

expansion, which effectively means taking away the threé(viII justify approximations employed in Ref6] more rigor-

body term in the Hamiltonian, cannot be trusted if used be-OUSIy as the method of calculation employs a Laplace trans-

yond theA+ B model form and the well known Tauberian theorems which relate

There is a strong indication from the present analysis th §mallswnh larget behavior. In this way all the approxima-

; o ; : ions are controlled.
&%GVXBﬁggglfW;to?eai?p\:v%ﬂwa;s;“ els tzuﬁ)l;;f L t;)n éhe To extract the asymptotic_behavior fl_o(t) from Eq.(42),
ABBA models. However, it remains to be seen whether th@NE asSUMes that at large times density decays as
bosonic on-site reaction version considered here, works on
the A+ B model, which the pure WBGA describes well. Ac-
tually, it is likely that it will not work. For example, a similar
study (where only single occupancy of lattice sites was a
lowed and reaction range was assumed short but ¥init
showed that only the full Kirkwood superposition approxi-
mation can describe thA+ B reaction[4], while here an
equivalent of the shortened Kirkwood superposition approxi-
mation was used. Extending the present analysis to the full
Kirkwood superposition approximation will amount to keep- ny(s)=A%e*s** 1T (1~ 2a,us), (A3)
ing all terms in Eq(58). Extending the WBGA in the direc-
tion of the full Kirkwood superposition approximation will and please note that(s)2# n,(s). To extract asymptotics
be presented in a forthcoming publication. one inserts Eqs(A2) and (A3) and Eqg.(41) into Eqg. (40),

There is an interesting question about how to implemenexpands in smalk (to extract leading order behavior for
the decoupling schemes of this work in the case of reactionlarget), and matches the most dominant terms.
diffusion systems of “hard-core” particles, i.e., systems The expansion of(s) for smallsis given by

n(t)~A(pu+t)"“. (A1)

|_A and « denote amplitude and exponent of decay to be
efound. m is introduced as a regulator for smallso that
Laplace transform ofi(t) andn?(t) exist:

n(s)=Ae%*s* I'(1—a,us), (A2)
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27]l_d/2
g(s)=(87D) %% I'(1-d/2)s"* 1+~ ——+0O(s)

(A4)
ford#2,4,6 ... . Ford=2 one has

g(s)=(87D) e[~ yg—In(7s)+O(7s)], (A5)

PHYSICAL REVIEW E 69, 011106 (2004

Also from <1 and 2¢<<1 one has the constraint thet
<1. However, ford<1 the term sin¢d) is positive, which
makes the amplitudel, negative. Thus all physical condi-
tions cannot be met with this type of matching. In R&0]
the conditiond<1 [coming from the fact that the first row is
used in Eq.(A8)] was overlookedif d>2 is allowed, am-
plitude A, is perfectly acceptable

The a=d/2 scenario can still turn out to be true. With this

wherey¢ is the Euler constant. Please note that the behavigghoice ofe and thed<2 condition coming from Eq(A6)

of g(s) for small s is qualitatively different ford<2 andd

the second row in EqA8) has to be used. Again, carrying

>2 which has to do with recurrence of random walks belowout a similar type of matching procedure would give nega-

and aboved=2. For smalls andd<2 g(s)xs%?"1

while

tive amplitude. Finally, thex=d/2 avenue has to be given

for d>2 g(s)=const. Atd=2 there is logarithmic depen- UP-

dence ons. The terme®” can be neglected if leading order

behavior for small §larget) is sought for.

At this stage one is left by the secofily way of balanc-
ing, i.e., matching the constang term on the left-hand side

At the moment we focus on thé<2 case. Inserting ap- Of Ed.(A9) with s*~%% on the right-hand sid¢The remain-

proximate formulas above fay(s) into Eq.(41) gives

(8’7TD)d/2

» —di2+1
Nei(S) F(l—d/Z)S ,  d<2. (AB)

Since the value forae is not known, one has to separate

various cases: expansion fo(s) reads

[T(1-a)s* 1+0(1)], a<1
— 1-a
n(s)=4 [“ +0(sal)}, w>1  AD
a—1
and likewise
[T(1-2a)s?* 1+ 0(1)], 2a<1
ny(s)=A%{ [ut™2e .
{za_l—i-O(s2 Hi, 2a>1.
(A8)

Inserting smalls expansiongA6)—(A8) into Eq. (40) gives

A[s*T(1—a)+O(s)]—ng

(87TD)d/2

—— g2
A ra-drn)

[s?*~ 97T (1—-2a)+O(s* 93],

(A9)

ing terms, e.g., the® on the left-hand side, can be balanced
by considering subleading correctionsrits).] This way of
balancing immediately givea=d/4 and

Ap=1/no(87D) "9

with constraints thad<2 [Eq. (A6) was used to get Eq.
(A9)].

Matching the constant termy, on the left-hand side of Eq.
(A9) is rather counterintuitive since in the framework of
Laplace transform constant can normally be disregarded
when larget behavior is sought for. To see how this comes
about, it is useful to turn back to E¢0).

Equation (40) comes from Eq.37). For simplicity we
focus on the casa=o in Eq. (37). It is clear that at the
right-hand side of Eq(37) the sn(s) term is subleading to
ng. [True enoughny is constant but it is multiplied byg(s).]
Thus n,(s) indeed has to be matched with(s)ng. This
procedure results in amplitudé, obtained previously. Also,
by using form(37), one can show that amplitud4, as given
in Eq. (A11) is valid even ford>2. Analysis can be repeated
with finite value ofA with the same outcome. It is important
to mentioned that procedure outlined above does not work at
d=4 and it has to be modified.

(A11)

APPENDIX B: DETAILS OF NUMERICAL INTEGRATION

Here, the numerical treatment of Eq83) and (34) is
described in more detail. The general procedure for integrat-

Also, please note that there are two different forms to use foing expressions of the type

n(s) andn,(s) in Egs. (A7) and (A8) and the ones used in
(A9) were fora<1 and 2¢<<1, respectively(same choice
was made in Ref[20]). Once« is found, one has to check
these conditions orx for self-consistency. There are two
ways to match the terms in EGA9): () as in Ref[20] and
(b) in a way related to the work in Ref6]. We begin with

the first case.
Balancing thes® term on the left hand side of EGA9)
with s?¢~92 on the right-hand side gives=d/2 and

1
A=— ;sm(qrd)l“(d)l“(l—d/2)2(87rD)‘d’2.
(A10)

Ii[f]=J:dsK(ti,s)f(s), (B1)

whereK(t,s) is singular when s approaches t is described in
Ref.[28]. Thei=0,1,2 ... andt;=ih. The following pro-
cedure described in Ref28], and usingK(t,s)=(t—s

+ 7))~ ¢, results in the quadrature formula:

li[f]~j§0 wii (1)), (B2)

where coefficientsv;; are given by
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hl—a

Wio:m[(Z—a—i— n(i+nt e

+(i+7n—1)2"], (B3)
hlfa
W;j =m[(i —jtp—1F +(i-j+ptr1)*
—2(i—j+n)?>"], (B4)
1-a
Wii:m[(l+ 2+t (a—n—-2)].

(B5)

The coefficientsv;; are chosen from the requirement that Eq.
(B2) is exact iff(t) is a piecewise linear function.

The pair of equations i1t33)—(34) is discretized as fol-
lows. First the differential equatiof83) is rewritten in inte-
gral form asn(t)=ny—\ftdse(s) and trapezoidal rule is

used to evaluate the integral since all functions are well be-

haved. However, for Eq:34) the rule(B2) and Eqs.(B3)-
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APPENDIX C: FINDING THE INVERSE LAPLACE
TRANSFORM OF k(s) FOR d=2

Here the inverse Laplace transform ef{s) for d=2
given in Eq.(66) will be found. Due to the presence of log
one has to use the Bramowitz contour to perform integration
over s. Also, the functionk(s) does not have poles. This
means that only contribution te(t) comes from the branch
cut and one obtains

=du

1
k(t)y=8wD | —e U
0

[ye+In(nu)]?+ =2

(CD

u

In the following we sety=1 but keep in mind that at the end
of the calculatiort has to be changed intd .

As t grows, due to the presence of exu(t), only smaller
and smaller values fou contribute to the integral above,
which can be approximated as

1
(Inu)?’

K~(87TD)J’OC%GUt (C2

(B5) designed for singular kernel is used. Implementation of

this philosophy gives

i—1
Po Pj
nizno—)\h ?-Fjgl QDJ'"‘?I , (BG)

i—1
2
ei=n; _)\,Zo Wij @j — AW @i,

(B7)

wheren;=n(t;) and¢;=¢(t;) fori=0,1,2 ... . Given that
all n; and ¢; are known forj=0,1,2 ... ,i—1 using equa-
tions above it is possible to calculaieand¢; . The iteration
is started withng=n(0) andgy=ng.

wherec is an arbitrary constant less than 1. It can be shown
that the terms omitted or missing the integration range do not
influence the leading order behavior fer By using partial
integration, and change of variables=v, the expression
above becomes

ct

87D
k(t)~ dve™”

ey (C3

By sending the upper integration limit to infinity, and ex-
panding the denominator in series ovev/Int, gives the
result for x(t) in Eq. (67).
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