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Application of Bogolyubov’s theory of weakly nonideal Bose gases to theA¿A, A¿B, B¿B
reaction-diffusion system
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Theoretical methods for dealing with diffusion-controlled reactions inevitably rely on some kind of approxi-
mation, and to find the one that works on a particular problem is not always easy. Here the approximation used
by Bogolyubov to study a weakly nonideal Bose gas, referred to as the weakly nonideal Bose gas approxima-
tion ~WBGA!, is applied in the analysis of three reaction-diffusion models:~i! A1A→Ø, ~ii ! A1B→Ø, and
~iii ! A1A,B1B,A1B→Ø ~theABBAmodel!. Two types of WBGA are considered, the simpler WBGA-I and
the more complicated WBGA-II. All models are defined on the lattice to facilitate comparison with computer
experiment~simulation!. It is found that the WBGA describes theA1B reaction well, it reproduces the correct
d/4 density decay exponent. However, it fails in the case of theA1A reaction and theABBA model.~To cure
the deficiency of WBGA in dealing with theA1A model, a hybrid of the WBGA and Kirkwood superposition
approximations is suggested.! It is shown that the WBGA-I is identical to the dressed-tree calculation sug-
gested by Lee@J. Phys. A27, 2633 ~1994!#, and that the dressed-tree calculation does not lead to thed/2
density decay exponent when applied to theA1A reaction, as normally believed, but it predicts thed/4 decay
exponent. Last, the usage of the smalln0 approximation suggested by Mattis and Glasser@Rev. Mod. Phys.70,
979 ~1998!# is questioned if used beyond theA1B reaction-diffusion model.

DOI: 10.1103/PhysRevE.69.011106 PACS number~s!: 05.40.2a
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I. INTRODUCTION

A variety of methods have been used to study diffusio
controlled reactions~see, e.g., Refs.@1–8# for review! rang-
ing from the simplest pairlike or Smoluchowskii approa
@9# to more sophisticated methods such as many particle
sity function formalism@4,5# and field theory@6–8#. Here,
we focus on the field theory. The field theory is very attra
tive since it offers a systematic way to do calculation. Ho
ever, like in any other theory, one needs approximations
solve the problem. The particular way of making appro
mate calculations will be analyzed, Bogolyubov’s theory
weakly nonideal Bose gases@10#, referred to in the following
as the weakly nonideal Bose gas approximation~WBGA!.

Mapping of the stochastic dynamics to field theory can
carried out for lattice@6# and off-lattice@11,9# models: The
dynamics is governed by a second quantized Hamilton
H(a,a†),

]

]t
C~ t !52H~a,a†!C~ t !, ~1!

and system configuration at timet can be extracted from
state vectorC(t). All observables can be expressed as fi
theoretic averages over products of creation and annihila
operatorsa† anda.

Most often, the only practical procedure of solving fie
theory is perturbative calculation: diffusion is set up as
zeroth order problem and reaction is perturbation. The pr
lem is that in the most interesting regime, when the dim
sion of the system is low, below some critical dimension,
perturbation series diverges due to infrared divergences.
infrared divergences are normally controlled in the fram
work of the renormalization group~RG! technique. So far,
such control exists only in a limited amount of cases, theA
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1A reaction being the simplest example. Clearly, there i
need to avoid perturbative treatment~together with RG! and
look for alternative ways of calculation. Here, the focus is
the WBGA.

In somewhat technical terms, the basic idea beh
WBGA is to neglect the products containing three or high
number of annihilation operators having nonzero wave v
tor in the Hamiltonian. This procedure leads to a closed
of equations for particle density and correlation function
Solving these equations amounts to resummation of infi
series of an diagrams. In this way WBGA appears as a n
perturbative technique which can be used to control infra
divergences of perturbation series. In the following, we w
distinguish between two types of approximations, referred
as WBGA-I and WBGA-II, which result in linear and non
linear sets of equations of motion, respectively.

The WBGA was used to study reaction-diffusion syste
previously @8,9,12–14#. For example,A1A reaction was
studied in Ref.@12# andA1B in Refs.@13,14#. These appli-
cations of WBGA on diffusion-controlled reactions, focuss
on highly nontrivial stationary states, characterized consid
able amount of spatial correlations among reactants. A
decay from such correlated states has been studied@15#.

The number of studies that employed the WBGA meth
is not that large and there is certainly a need to analyze
method of calculation further. This is the reason why WBG
is considered in this work. The first goal of the present wo
is to examine a very different situation from the one stud
previously in Refs.@12–14#. Performance of WBGA will be
tested on models which have a trivial stationary state~no
particles in the system! but a nontrivial way of approaching
such a stationary state. In this work, initial condition is tak
to be uncorrelated, Poisson-like@16#. The three models will
be used as study cases,~i! theA1A, ~ii ! theA1B, and~iii !
the ABBA model.
©2004 The American Physical Society06-1
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Both theA1A andA1B models have been studied pr
viously by a variety of methods, and are the natural cho
for testing the performance of any approximation scheme
large list of published work on these two reactions can
found in Ref.@17#.

The ABBA model was formulated and studied in Re
@18,19# with RG technique usinge expansion, and numerica
simulation. The model describes a mixture of theA1A, B
1B, and A1B reactions which occur at the same tim
There is a need to understand the model much bette
particular, evaluation of the particle density ratio forA andB
particles is of great importance. The second aim is to
proachABBAmodel, once again, but with a nonperturbati
method of calculation.

The paper is organized as follows. In Sec. II the mode
be studied is specified in detail, and mapping to the fi
theory is described. The outcome of this section is a Ham
tonian which describes the most general two-spec
reaction-diffusion model. In Sec. III equations of motion f
density and correlation functions are derived using
WBGA method. In Sec. IV the WBGA approach is used
describe theA1A model, with application of WBGA-I dis-
cussed in Sec. IV A, and application of WBGA-II in Se
IV B. Also in Sec. IV A equivalence of dressed tree calcu
tion with WBGA-I is shown. Section IV C discusses mod
fication of Kirkwood superposition approximation in th
spirit of WBGA. In Sec. VA1B model is studied by using
WBGA-I and WBGA-II methods. Finally, the analysis of th
most complicated of the three models studied here,
ABBA model, is presented in Sec. VI. Working of WBGA
is analyzed in Sec. VI A and of WBGA-II in Sec. VI B. Th
step by step merger of the WBGA and Kirkwood superpo
tion approximations is discussed in Sec. VI C. The summ
and outline of future work is given in Sec. VII.

II. THE MODEL AND THE MAPPING
TO THE FIELD THEORY

The mapping to the field theory will be carried out for th
most general two-species reaction-diffusion model. TheA
1A, A1B, andABBA models will be obtained as speci
cases. It will be assumed that particles cannot be crea
neither by external source, nor by birth process. In the m
general version of the two-species reaction-diffusion mo
each of theA or B particles jumps onto the one of the neig
boring lattice sites with rate~or diffusion constant! DA or
DB , irrespectively of the occupation number of the s
where particle jumps to. Apart from diffusing, particles a
nihilate in pairs. Particler sitting at the lattice sitex and
particlen sitting at the sitey are assumed to annihilate wit
ratesxy

rn . This is schematically denoted as

r~x!1n~y!→0, ~2!

wherer,n5A,B and x,y51,2,3, . . . ,V. It is assumed tha
there areL lattice sites in one direction, and ford dimensions
the total number of sites equalsV5Ld. Labelsx and y de-
note lattice sites.
01110
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The stochastic dynamics of the most general two-spe
model is governed by the master equation of the system

d

dt
P~c,t !5(

c8
Wc8→cP~c8,t !2(

c8
Wc→c8P~c,t !, ~3!

wherec denotes particular configuration of the system be
defined by the set of lattice occupation numbers. TheWc→c8
denote transition rate from statec into c8, and can be ob-
tained from knowledge ofDA , DB , andsxy

rn .
The master equation~3! is the first-order differential equa

tion and one has to specify initial condition in the for
P(c;0) for all c. In the following it will be assumed tha
P(c;0) is the Poisson distribution with averages denoted
n0,A andn0,B for A andB particles, respectively.

Using standard procedures~e.g., as the ones described
Refs. @6,11,9,20#!, Eq. ~3! can be translated into a
Schrödinger-type equation~1! by using second-quantize
HamiltonianH5HD1HR whereHD describes diffusion and
HR reactions. We find lattice formulation convenient, and
here formalism in Ref.@20# is closely followed, which results
in

HD5(
x

(
e(x)

@DAax
†~ax2ae!1DBbx

†~bx2be!# ~4!

and

HR5
1

2 (
x,y

sxy
AA~ax

†1ay
†1ax

†ay
†!axay1

1

2 (
x,y

sxy
BB~bx

†1by
†

1bx
†by

†!bxby1(
x,y

sxy
AB~ax

†1by
†1ax

†by
†!axby . ~5!

ax
† , ax , bx

† , andbx are creation and annihilation operato
for A andB particles, respectively;

@ax ,ay
†#5dx,y , @bx ,by

†#5dx,y ,

@ax ,by
†#5@ax

† ,by#50, ~6!

and @ I,II #[III 2III denotes commutator. The observabl
can be calculated as

^O@nx~ t !#&5^0uO@~ax
†11!ax#e

2HtuC0&, ~7!

whereO(nx) denotes any function which depends on parti
numbers in an arbitrary way. Appearance ofax

†11 in the

right-hand side of Eq.~7!, instead of expectedax
† , has to do

with the fact that bra-vector̂0u is true vacuum state. This
point is nicely discussed in Ref.@6#. The generalization of
Eq. ~7! to more complicated form forO(nx ,ny , . . . ) is
trivial. The C0 is given by

C05expFn0,A(
x

ax
†1n0,B(

x
bx

†G u0&. ~8!

In the following we compactify notation and use
6-2
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^ f ~ax ,ay
† , . . . !&[^0u f ~ax ,ay

† , . . . !e2HtuC0&, ~9!

where f denotes any function of operatorsax , ay
† , bx , and

by
† for any x andy.

To avoid effects of boundaries periodic boundary con
tions are assumed and one can introduce Fourier transfo
for operators,

ax5
1

AV
(

k
eikxak , ax

†5
1

AV
(

k
e2 ikxak

† , ~10!

bx5
1

AV
(

k
eikxbk , bx

†5
1

AV
(

k
e2 ikxbk

† ~11!

and reaction rates

sx
rn5

1

V (
k

sk
rneikx, sk

rn5(
x

sx
rne2 ikx ~12!

with r,n5A,B. For convenience, Fourier transforms are d
fined slightly differently for operators and reaction rates~just
to reduce explicit occurrence ofV in expressions later on!.
Also, it is useful to express HamiltonianH in terms of cre-
ation and annihilation operators ink space. Starting from
Eqs.~4! and ~5!, and using Eqs.~10!–~12! gives

HD5DA(
k

k2ak
†ak1DB(

k
k2bk

†bk1O~k4! ~13!

and

HR5
1

AV
(
q,k

sq
AAak

†ak2qaq1
1

2V (
q,k,l

sq
AAak

†al
†ak2qal 1q

1
1

AV
(
q,k

sq
BBbk

†bk2qbq1
1

2V (
q,k,l

sq
BBbk

†bl
†bk2qbl 1q

1
1

AV
(
q,k

sq
AB~ak

†ak2qbq1bk
†bk2qaq!

1
1

V (
q,k,l

sq
ABak

†bl
†ak2qbl 1q . ~14!

Please note that Eq.~13! is an approximation which is valid
for small k. The form in Eq.~14! is exact. Once the explici
form of H is known, one can proceed with calculation
particle density, as shown in the following section.

III. EQUATIONS OF MOTION FOR DENSITY
AND THE CORRELATION FUNCTIONS

Equation~7! summarizes how observables are calcula
within the field theory formalism. We continue with the sp
cific case of local particle densitiesnA(x,t) and nB(x,t),
which can be calculated withO5ax

†ax and O5bx
†bx , re-

spectively; using Eq.~7! one gets nA(x,t)5^ax& and
nB(x,t)5^bx&. Furthermore, if initial conditions are transla
01110
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tionally invariant, which is the case for Poisson-distribut
particles, one has

nA~ t ![
1

V K (
x

axL 5
1

AV
^a0&, ~15!

nB~ t ![
1

V K (
x

bxL 5
1

AV
^b0&, ~16!

where the sum overx divided by AV was recognized ask
50 component ofak andbk .

The time derivative ofnA(t) and nB(t) is controlled by
@a0 ,H# and @b0 ,H#, respectively. Evaluating commutato
gives equations of motion,

]nA

]t
52Fs0

AAnAnA1s0
ABnAnB

1
1

V (
kÞ0

~sk
AAGk

AA1sk
ABGk

AB!G , ~17!

]nB

]t
52Fs0

BBnBnB1s0
ABnAnB

1
1

V (
kÞ0

~sk
BBGk

BB1sk
ABGk

AB!G , ~18!

where

Gk
AA[^aka2k&, Gk

BB[^bkb2k&, Gk
AB[^akb2k&.

~19!

To derive Eqs.~17! and ~18! the sum overk is split into k
50 andkÞ0 parts and assumption is made thatk50 com-
ponents are nonfluctuating, i.e.,^a0a0&'^a0&^a0& and like-
wise for ^a0b0& and ^b0b0& ~thermodynamic limit!.

Equations~17! and~18! involve correlation functionsGk
rn

with r,n5A,B. Again, evaluation of @O,H# with O
5aka2k , akb2k , bkb2k gives

]

]t
Gk

AA522DAk2Gk
AA2Fsk

AAnA
21

1

V (
qÞk

sq
AAGk2q

AA

12~s0
AA1sk

AA!nAGk
AA1sk

ABnA~Gk
AB1G2k

AB!

12s0
ABnBGk

AAG , ~20!

]

]t
Gk

BB522DBk2Gk
BB2Fsk

BBnB
21

1

V (
qÞk

sq
BBGk2q

BB

12~s0
BB1sk

BB!nBGk
BB1sk

ABnB~Gk
AB1G2k

AB!

12s0
ABnAGk

BBG , ~21!
6-3
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]

]t
Gk

AB52~DA1DB!k2Gk
AB2Fsk

ABnAnB1
1

V (
qÞk

sq
ABGk2q

AB G
2@~s0

AA1sk
AA!nA1~s0

BB1sk
BB!nB

1s0
AB~nA1nB!#Gk

AB2sk
AB~nAGk

BB1nBGk
AA!. ~22!

Equations~20!, ~21!, and~22! are approximate since correla
tors of type ^akaqal& with kÞ0, qÞ0, and lÞ0 are as-
sumed to be small. This is exactly the content of the WBG

A few comments about the inversion symmetry~in k
space! of Gk

rn r,m5A,B are in order. By construction
Gk

rr(t)5G2k
rr (t) for r5A,B since these functions represe

correlations for same operator types. It can be checked
the same property holds forGk

AB , provided it is true att
50. This is indeed the case since the initial conditions
Gk

rn with rn5A,B are given by

Gk
rn~0!5Dk,0Vn0,rn0,n , r,n5A,B, ~23!

whereDx,y denotes Kronecker delta function,

Dx,y5H 1, x5y

0, xÞy.
~24!

In the following, wheneverGk
AB1G2k

AB appears in the equa
tions of motion, we will use the assumption of inversio
symmetry and shorten the expression to 2Gk

AB .
The last terms in Eqs.~20!–~22!, which are products of

density and correlator, and appear to be third order in den
O(n3), lead to nonlinear equations of motion. These ter
come from averages of the type^akaqal& where one of the
$k,q,l % momenta is zero while remaining two are not. Bei
third order in density, it is tempting to neglect these terms.
test the effect of neglecting or keepingO(n3) terms two
approximations will be studied, WBGA-I and WBGA-II
with O(n3) terms taken away or kept in the calculatio
WBGA-I approximation results in a linear set of equatio
which makes the analytical analysis possible. In the follo
ing, the term WBGA will imply both WBGA-I and WBGA-
II.

The equations of motion for the three models we wish
study, theA1A, A1B, and ABBA, are easily extracted
from the most general form given in Eqs.~17!–~18! and
~20!–~22!. To obtain equations of motion for theABBA
model one simply setsDA5DB5D and

sxy
AA5sxy

BB5lDx,y , sxy
AB5dDx,y . ~25!

Thus particles have to meet at the same lattice site in orde
react. Further, to obtain theA1A model one simply setsd
50 ~this decouplesA1A andB1B reactions, i.e., particles
A andB move and react independently of each other!. To get
A1B model one takesl50 which rules out theA1A reac-
tion. In the following section we continue with analysis
the A1A model within WBGA framework.
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IV. WBGA APPLIED TO THE A¿A REACTION

Using Eq.~25! with d50 in Eqs.~17!–~18! and~20!-~22!
gives equation of motion for the density

]n

]t
52l@n21F# ~26!

and the correlator

]

]t
Gk522Dk2Gk2l@n21F#24lnGk . ~27!

The letterA has been dropped onnA and Gk
A to simplify

notation, and likewisen0,A is shortened ton0 . F(t) is im-
plicitly defined by correlators,

F~ t !5
1

V (
kÞ0

Gk~ t !. ~28!

Thus equations above are meant to describe the model w
only one type of species,A, jumps on the lattice and particle
have a chance to react only when at the same lattice site.
equations above will be solved in the following two subse
tions using WBGA-I and WBGA-II approaches.

A. WBGA-I

In the WBGA-I, when term proportional tonGk is
dropped, Eq.~27! can be studied analytically. Uncorrelate
~Poisson-like! initial condition is described byGk(0)
5dk,0Vn0

2 and solution of Eq.~27!, with kÞ0, reads

Gk~ t !52lE
0

t

dt8e22Dk2(t2t8)@n~ t8!21F~ t8!#. ~29!

Please note that theG0(t) is determined fromG0(t)
5Vn(t)2 ~thermodynamic limit! and not from Eq.~29!.
Summation of Eq.~29! over kÞ0 and division byV gives

F~ t !52lE
0

t

dt8G~ t2t8!@n~ t8!21F~ t8!#, ~30!

where

G~ t2t8![
1

V (
kÞ0

e22k2D(t2t8) ~31!

was introduced. For large lattice size whenV→`, expres-
sion above can be approximated as

G~ t2t8!'@8pD~ t2t81h!#2d/2, ~32!

whereh51/8pD.
Equations~26!, ~30!, and~32! completely specifyn(t). It

is not possible to solve them analytically, however, lar
time behavior ofn(t) can be extracted. To do this we intro
ducew[n21F and rewrite Eqs.~26! and ~30! as

]n

]t
52lw, ~33!
6-4
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w~ t !5n~ t !22lE
0

t

dt8G~ t2t8!w~ t8!, ~34!

which completely specifyn(t). Equations~33! and~34! have
been analyzed in the entirely different context ofA1B reac-
tion in Ref. @6# where it was shown that asymptotic dens
decay is given by

n~ t !;An0~8pDt !2d/4. ~35!

There is another way of extracting asymptotics which
interesting to look at. By using Laplace transform it is po
sible to transform Eqs.~33! and ~34! into a single equation
Laplace transform is defined as

X~s!5E
0

`

dte2stX~ t !. ~36!

For X5n,w same symbol will be used for Laplace transfor
as for the original function. The only exception to the ru
are two cases. ForX(t)5n(t)2, X(s)5n2(s), while for
X(t)5G(t), X(s)5g(s).

Taking Laplace transform of Eq.~34! one getsw(s)
5n2(s)2lg(s)w(s), and combining it withw(s)5(sn(s)
2n0)/l from Eq. ~33! gives

n2~s!5Fg~s!1
1

lG@n02sn~s!#. ~37!

The g(s) is the Laplace transform ofG(t),

g~s!5~8pD !2d/2ehssd/221G~12d/2,hs!. ~38!

G(b,x) denotes the incomplete gamma function,

G~b,x!5E
x

`

du u211be2u. ~39!

The analytic continuation ofG(b,x) is possible. For nonin-
tegerb and b50, G(b,z) is multiple-valued function ofz
with a branch point atz50, and has no poles. Dividing b
g(s)11/l, Eq. ~37! results in

sn~s!2n052leff~s!n2~s!, ~40!

whereleff(s) denotes the Laplace transform of the effecti
reaction rate,

leff~s!5
l

11lg~s!
. ~41!

Finally, taking the inverse Laplace transform of Eq.~40!
gives

]n

]t
52E

0

t

dt8leff~ t2t8!n~ t8!2. ~42!

Equation~42! was obtained in Ref.@20#, in the context of
A1A reaction, through a diagrammatic technique and
ferred to as thedressed-treecalculation. Thus here we hav
01110
s
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shown that WBGA-I is equivalent to the dressed-tree cal
lation. Also, the following solution to Eq.~42! was suggested
@21#:

n~ t !;2
G~12d/2!2

G~12d!
~8pDt !2d/2. ~43!

However, Eqs.~33!–~34! and Eq.~42! are fully equivalent
and expressions in Eqs.~35! and ~43! should be the same
Clearly, studies@20# and @6# suggest contradictory results
Ref. @20# argues that the dressed-tree calculation givesd/2
decay exponent for particle density, while Ref.@6# argues for
thed/4 decay exponent. Solution to this paradox is discus
in Appendix A where analysis of Ref.@20# is repeated. It is
shown that in Ref.@20# it was incorrectly concluded tha
dressed-tree calculation results in thed/2 exponent, which
basically came from balancing wrong terms in Laplace tra
formed version of Eq.~42!.

Thus the first main finding of this section is that WBGA
predicts wrong density decay exponent forA1A reaction. It
gives exponent value ofd/4 instead ofd/2. The second find-
ing is that the dressed-tree calculation suggested in Ref.@20#
is equivalent to WBGA-I~and fails to describeA1A reac-
tion!.

Figure 1 offers graphical representation of these resu
The numerical treatment of Eqs.~33! and ~34! confirms the
asymptotic decay given in Eq.~35!. Equations~33! and~34!
were solved previously numerically in Ref.@6#. In here, the
features of the decay curves are somewhat different from
ones obtained in Ref.@6#. For example, curves shown in th
work have a concave form~bent upward!, while curves in
Fig. 1 of Ref.@6# are convex~bent downward! as if asymp-
totics have not yet been reached. Also, in here, there is
intersection of curves, which can be found in Ref.@6#. These

FIG. 1. The numerical solution of Eqs.~33! and ~34! for d
51, 1.5, 2.5, 3~solid lines!. The dotted lines indicate asymptotic
as given by Eq.~35!. Time is given in seconds and particle dens
n(t) is dimensionless in units of particles per site. Initial densityn0

was set equal to 1, and reaction ratel51 s21 was used.
6-5
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ZORAN KONKOLI PHYSICAL REVIEW E 69, 011106 ~2004!
differences could come from the numerical treatment. T
details of numerical treatment used in this work are shown
Appendix B.

In the following subsection it will be shown that, in th
case ofA1A reaction, weaknesses of WBGA-I method e
tends to WBGA-II level.

B. WBGA-II

When termnGk is kept in Eq.~27!, equivalent of Eq.~34!
reads

w~ t !5n~ t !22lE
0

t

dt8I ~ t,t8!w~ t8!, ~44!

while Eq. ~33! stays the same. TheI (t,t8) is given by

I ~ t,t8!5G~ t2t8!expF24lE
t8

t

dt9n~ t9!G . ~45!

The asymptotics of Eq.~44! cannot be extracted by Laplac
transform, and it is more convenient to use the approac
Ref. @6#. For larget, Eq. ~44! can be approximated by

w~ t !'n~ t !22I ~ t,0!I~ t !, ~46!

whereI(t)[l*0
t dt8w(t8). This step is valid provided two

conditions are satisfied. First, the termI (t,t8) has to vanish
as time difference t2t8 grows. Second, the integra
*0

`dtw(t) has to be finite. Using Eq.~33! one getsI(t)
5n02n(t)'n0 and Eq.~46! becomes

]n

]t
'2ln21lI ~ t,0!n0 . ~47!

The equation above is solved with the assumption that
ymptotically n(t);A/t, which is checked self-consistentl
at the end. Using postulated asymptotics fort, one can see
from Eq. ~45! that I (t,0);const3t2(d/214lA). Assuming
that

I ~ t,0!

n~ t !2
→0, t→`, ~48!

one can solve Eq.~47! in the form ]n/]t52ln2, and get
A51/l. Assumption ~48! is correct provided 2,d/2
14lA5d/214, which is true for anyd. This shows that
n(t)'1/(lt) is the asymptotic form for the solution of Eq
~33! and~44!. This means that the last term (nGk) in Eq. ~27!
only influences intermediate behavior whent is not too large.
For larget, WBGA-II gives exactly the same asymptotics
the pure mean field treatment.

Thus main finding so far is that both WBGA-I an
WBGA-II fail to describe theA1A reaction. This is some
what surprising as even the simplest pair approach,
Smoluchowskii method, describes the exponent ofA1A cor-
rectly. ClearlyA1A reaction cannot be viewed as a weak
interacting Bose gas. The question is what is the minim
01110
e
n

of

s-

g.

modification of WBGA which will provide correct result fo
the A1A model? This question will be answered in the fo
lowing subsection.

C. The hybrid of the WBGA and Kirkwood superposition
approximation „WBGA ÕKirkwood …

To see how to improve the WBGA one has to clarify wh
went wrong in the first place. We start from the problema
equation Eq.~20! which becomes~27! when terms withsk

AB

are set to zero. To trace why the WBGA fails it is useful
rewrite Eq. ~20! as it looks one step before the WBGA
made, and we keep only terms describingA1A reaction:

]

]t
Gk522Dk2Gk2Fskn

21
1

V (
qÞk

sqGk2qG2Ġ (3),

~49!

where

Ġ (3)5
1

AV
(

q
sq~^a2kak2qaq&1^aka2k2qaq&! ~50!

is the focus of the present subsection. In technical terms,
usage of WBGA can be translated into approximating a th
point density^axayaz& in a particular way. In the case o
WBGA-I one simply takes

^ak1
ak2

ak3
&5^axayaz&50, ~51!

while in WBGA-II one assumes

^ak1
ak2

ak3
&'Dk1,0Dk2,0Dk3,0a0

31Dk1,0D̄k2,0D̄k3,0a0^ak2
ak3

&

1D̄k1,0Dk2,0D̄k3,0a0^ak1
ak3

&

1D̄k1,0D̄k2,0Dk3,0a0^ak1
ak2

&, ~52!

where the notationD̄k,q512Dk,q was introduced. Inserting
Eq. ~52! into Eq. ~49! gives the terms describingA1A pro-
cess in Eq.~20!. It is useful to transform the approximatio
above into thex space to understand the nature of appro
mation better. The inverse Fourier transform of Eq.~52!
gives @22#

^axayaz&'n31n~^axay&2n2!1n~^axaz&2n2!

1n~^ayaz&2n2!. ~53!

By looking at Eq.~53! it is possible to understand why th
WBGA fails in the case ofA1A reaction. Equation~53!
suggests that the WBGA is somewhat equivalent to the
ditive expansion of correlation functions. It has been argu
that such an additive approximation is inferior to the Kir
wood superposition approximation@4,5#, and analysis was
done for fermionic models, but is likely to be valid fo
bosonic models as well~at least for the ones considere
here!. Clearly, to correctly describeA1A reaction one has to
use Kirkwood superposition approximation. How can o
implement such an approximation for bosonic models?
6-6
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The usage of the Kirkwood superposition approximat
in the context of reaction-diffusion models has been th
oughly tested in the case of fermionic representation, wh
double occupancy of lattice sites is not allowed~for a nice
review see, e.g., Ref.@4#!. In such a case the Kirkwood su
perposition approximation is expressed through

^nxnynz&'^nxny&^nxnz&^nynz&/n
3 , ~54!

and it was shown that the correctd/2 density decay exponen
results from this procedure. However, when multiple oc
pancy of lattice sites is allowed, as is done here, one ha
be careful. Another way of carrying out the Kirkwood supe
position approximation would be to take

^axayaz&'
1

n3
^axay&^axaz&^ayaz&. ~55!

In the case of fermionic representation there is no ambig
whether to use Eq.~54! or Eq. ~55! as they are fully equiva-
lent, owing to the fact that field theoretic averages of ty
^nxnx& are not possible in fermionic representation, howev
they are bosonic where a choice between Eqs.~54! and~55!
has to be made.

By studying Eqs.~54! and~55! aroundt50 it is possible
to see that approximation~55! is more reasonable one. Suc
an analysis is omitted to save the space. Thus, in here
argue that Eq.~55! is a more reasonable platform for carr
ing out the Kirkwood superposition approximation in th
case of bosonic field theory. Also, for on-site reaction mo
as studied here, it is crucial that averages of the type^axax&
are treated correctly. Therefore, in the following, Eq.~55!
will not be used directly, but will be modified further in th
spirit of the WBGA, accounting for the thermodynamic lim

The Kirkwood superposition approximation in Eq.~55! is
rephrased in thek space which gives@23#

^ak1
ak2

ak3
&'

d~k11k21k3!

n3V3/2 (
l

G lGk12 lGk21 l . ~56!

To get the improved form for three body terms one inse
Eq. ~56! into Eq. ~50!, leading to

Ġ (3)'
2

n3V2 (
q,l

sqG lGk1 lGk2q1 l . ~57!

The expression above was obtained by using symmetry p
ertiesGk5G2k andsq5s2q . Also, upon inserting Eq.~56!
into Eq. ~50!, the two terms on the right-hand side of E
~50! contribute equally resulting in factor 2 in Eq.~57!.

In the spirit of WBGA the terms in Eq.~56! which contain
large number of correlation functions withk vector different
from zero are neglected. Also, care is taken to account for
thermodynamic limit, wherek50 components are treate
separately. This is done in two stages, first sum overq is split
into q5k and qÞk parts, and then for each of the sum
various contributions from sum overl are distilled to extract
nonfluctuatingk50 operators. This gives
01110
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Ġ (3)'
2

n3V2 Fsk~G0
2Gk1G0Gk

2!

1 (
qÞk

sqG0~GkGq1GkGk2q1GqGq2k!G , ~58!

where terms of the typeGkGqG l with k,q,lÞ0 have been
neglected.

The first term on the right-hand side of Eq.~58! can be
neglected since it leads to mean field behavior~as shown in
Sec. IV B!. The second term can be absorbed into one of
three terms under the sum sign e.g., under the first te
Second and third terms under the sum sign, couple corr
tion functions in a nontrivial way and are neglected in t
following for simplicity reasons. WithG0'n2V, and apply-
ing the recipe just described gives

Ġ (3)'
2

n
GkS s0n21

1

V (
qÞ0

sqGqD , ~59!

which is midway between the WBGA-II@Eq. ~52!# and Kirk-
wood superposition approximation@Eq. ~56!#. It is interest-
ing to contrast the equation above with the shortened K
wood superposition approximation discussed in Refs.@4,5# in
the context of fermionic models. There is some similari
but descriptions are far from being identical.

Using approximation~59!, referred to in the following as
the WBGA/Kirkwood approximation, to decouple three bo
density, and a particular form forsxy

AA used throughout this
section, gives equations of motion

]

]t
Gk522Dk2Gk2l~n21F!22lGk

F1n2

n
, ~60!

which should be contrasted with Eq.~27!. The most conve-
nient way to solve Eqs.~26! and ~60! is to introducexk as
Gk5n2xk and n21F5n2x where x[11(1/V)(kÞ0xk ,
and xk with k50 is set equal toV and does not change i
time ~thermodynamic limit!. Applying change of variables
just described modifies Eq.~26! into

]

]t
n~ t !52k~ t !n~ t !2, ~61!

where effective reaction ratek(t)5lx(t) was introduced.
Same change of variables transforms Eq.~60! into

]

]t
xk522Dk2xk2lx. ~62!

Equation~62! can be solved for allxk andkÞ0 @pretending
that x(t) is known#, and after summing overkÞ0 one gets
the following integral equation:

x~ t !512lE
0

t

dt8G~ t2t8!x~ t8!. ~63!

The solution of the equation above can be found by
Laplace transform which gives
6-7
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k~s!5
l

s@11lg~s!#
. ~64!

Also, one can integrate Eq.~61!, which gives

n~ t !5
n0

11n0k̄~ t !
, k̄~ t !5E

0

t

dt8k~ t8!. ~65!

It is not possible to obtain a closed expression fork(t) and
n(t). However, the asymptotic form ofn(t) can be ex-
tracted.

Inserting smalls expansion ofg(s) @see Eqs.~A4! and
~A5!# into Eq. ~64! gives

k~s!;5
~8pD !d/2

G~12d/2!
s2d/2, d,2

2
8pD

s@gE1 ln~hs!#
, d52

l

11lg~0!
s21 , d.2

~66!

for s→0. Taking the inverse Laplace transform of the equ
tion above gives leading order behavior for the effective
action rate constant,

k~ t !;5
~8pD !d/2

G~12d/2!G~d/2!
td/221, d,2

8pD

ln t/h
, d52

l

11lg~0!
, d.2

~67!

when t→`. To find the inverse Laplace transform ofk(s)
for d52 @second line of Eq.~66!# is somewhat involved;
please see Appendix C for details. Finally, inserting Eq.~67!
into Eq. ~65! gives the following asymptotics:

n~ t !;5
G~12d/2!G~11d/2!~8pDt !2d/2, d,2

ln8pDt

8pDt
, d52

F1

l
1g~0!G t21, d.2,

~68!

where g(0) entering in the third row can easily be foun
from Eq. ~A4!. Thus, in here, it was shown that Kirkwoo
superposition approximation reproduces correct density
cay exponentd/2 when implemented following Eq.~55!.

V. WBGA APPLIED TO THE A¿B REACTION

Equations of motion for density and correlation functio
describing theA1B model result from Eqs.~17! and ~18!
and Eqs.~20!–~22! by using Eq.~25! with l50. For sim-
plicity, we focus onnA5nB[n case and omit labelsA andB.
Also, as in the preceding sectionn05n0,A5n0,B . Applying
01110
-
-

e-

the procedure outlined above leads to the equations for
ticle densities

]n

]t
52d~n21Fc!, ~69!

whereFc is given by theAB correlation function,

Fc~ t !5
1

V (
kÞ0

Gk
AB~ t !. ~70!

Equations for correlatorsGk[Gk
AA5Gk

BB and Gk
c[Gk

AB are
given by

S ]

]t
12Dk2DGk

c52d~n21Fc!22dn~Gk1Gk
c!, ~71!

S ]

]t
12Dk2DGk522dn~Gk1Gk

c!. ~72!

The most convenient way to solve the equations above i
diagonalize them by subtraction and addition. The final res
is that correlations ofAB pairs are governed by

Fc~ t !52dE
0

t

dt8@G~ t,t8!1I ~ t,t8!#@n~ t8!21Fc~ t8!#

~73!

and forAA ~or BB) pairs as

F~ t !5dE
0

t

dt8@G~ t,t8!2I ~ t,t8!#@n~ t8!21Fc~ t8!#.

~74!

The I (t,t8) appearing in Eqs.~73! and ~74! has the same
form as in Eq.~45! with trivial change ofl into d. The same
type of analysis as in Sec. IV B leads to the conclusion t
approximation G(t,t8)1I (t,t8)'G(t,t8) can be used,
which in turn leads tod/4 density decay exponent. Interes
ingly enough, both WBGA-I and WBGA-II approaches lea
to the correctd/4 exponent when used to solve theA1B
model.

In some sense the WBGA approach seems to be su
rather well for theA1B reaction. Quite the contrary can b
said for theA1A reaction as shown previously. To unde
stand the working of WBGA on the more general model t
ABBA model will be studied in the following section.

VI. WBGA APPLIED TO THE ABBA MODEL

The ABBA model was suggested in Refs.@18,19#. The
mean field analysis of this model predicts that minority sp
cies has to die out asymptotically,u(t)[nB(t)/nA(t)→0 as
t→`, minority species being the one with smaller conce
tration at t50. ~For convenience we chose B species to
minority, n0,A.n0,B .) However, fluctuations lead to quite re
markable survival of minority species. Below critical dime
sion u(t)→const ~provided DA5DB , for DAÞDB one of
the species dies out@24#!.

There are two reasons for studyingABBA model here.
6-8
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First, the calculation of the asymptotic particle density ra
is still an open question. The previously usede-expansion
technique could not reveal the form ofu(`). u(`) has an
interesting property that it depends both on reaction rates
initial particle concentrations, while individual reactions d
not @25#. Thus, in here, calculation ofu(`) is attempted
again, with a different calculation scheme, the WBG
method. Second, theA1A and A1B reactions have bee
studied in previous sections but now they are allowed
occur simultaneously. It is interesting to see how the WBG
approach performs in such a situation.

We start from equations of motion given in Sec. III whic
describe a very general two species reaction-diffusion mo
Assumptions in Eq.~25! describe the content of theABBA
model. Using Eq.~25! in Eqs.~17! and ~18! gives

]

]t
nA52~lnA

21dnAnB1lFAA1dFAB!, ~75!

]

]t
nB52~lnB

21dnAnB1lFBB1dFAB!, ~76!

where

Frn5
1

V (
kÞ0

Gk
rn , r,n5A,B. ~77!

Also, equations for correlators~20!–~22! simplify to

]

]t
Gk

AA522Dk2Gk
AA2l~nA

21FAA!22~2lnA1dnB!Gk
AA

22dnAGk
AB , ~78!

]

]t
Gk

BB522Dk2Gk
BB2l~nB

21FBB!22~2lnB1dnA!Gk
BB

22dnBGk
AB , ~79!

]

]t
Gk

AB522Dk2Gk
AB2d~nAnB1FAB!2~2l1d!~nA

1nB!Gk
AB2d~nAGk

BB1nBGk
AA!. ~80!

The equations above will be solved in the next two subs
tions within WBGA-I and WBGA-II approaches.

A. WBGA-I

In the framework of WBGA-I all seeminglyO(n3) terms
of the type nrGk

n with r5A,B and n5AA,AB,BB are
thrown away in Eqs.~78!–~80!. Following steps, similar to
those of Sec. IV A, gives

]

]t
nA52~lwAA1dwAB!, ~81!

]

]t
nB52~lwBB1dwAB! ~82!
01110
nd

o

l.

c-

and

wrn[nrnn2LrnE
0

t

dt8G~ t2t8!wrn~ t8!,

Lrn[~lDr,n1dD̄r,n!,

wrn[nrnn1Frn ~83!

for r,nP$A,B%. To solve Eqs.~81!–~83! it is possible to
employ the same technique as in Sec. IV B. The equati
above can be approximated by

0'nrnn2G~ t,0!Irn~ t !, r,n5A,B ~84!

with

Irn~ t ![LrnE
0

t

dt8wrn~ t8!, r5A,B. ~85!

By integrating Eqs.~81! and~82! a useful relationship can b
derived forIrn , r,n5A,B,

Irr~ t !1IAB~ t !5n0,r2nr~ t !'n0,r , r5A,B. ~86!

Using Eqs.~84! and ~86! gives

~nA1nB!2'G~ t !~n0,A1n0,B!, ~87!

nA
22nB

2'G~ t !~n0,A2n0,B!. ~88!

Solving the equations above leads to

nr;
nr~0!

An0,A1n0,B

~8pDt !2d/4, r5A,B. ~89!

According to WBGA-I both particles decay with thed/4
exponent and amplitudes given above. The WBGA-I pred
the same decay exponent as for the pureA1A model. As in
the case ofA1A reaction, the value ford/4 exponent ob-
tained here is not correct. The computer simulation a
e-expansion analysis of this reaction suggestd/2 exponent
@18,19#. To see what happens whenO(n3) terms are kept in
Eq. ~78!–~80! we proceed with WBGA-II calculation.

B. WBGA-II

In the WBGA-II, when all terms are kept in Eqs.~78!–
~80!, it is useful to rewrite these equations in the vector fo

S ]

]t
12Dk2D S Gk

AA

Gk
BB

Gk
AB
D 52P~ t !S Gk

AA

Gk
BB

Gk
AB
D 2S lwAA

lwBB

dwAB

D ,

~90!

where the matrixP is given by

P5nAS 4l12du 0 2d

0 4lu12d 2du

du d ~2l1d!~11u!
D

~91!
6-9
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with u5nB /nA .
Vector equation~90! is very hard to solve analytically

However, there are some guidelines how to extract late t
asymptotics. At the WBGA-I level it appears that theABBA
model and theA1A model are very similar. In the following
it will be assumed that such similarity can be extrapolated
the presently studied WBGA-II level. This implies that me
field behavior should be expected from Eq.~90!.

To get the feeling of what follows it is useful to analyz
Eqs.~75! and~76! at the mean field level, where fluctuation
are neglected by settingFrn to zero; ṅA52(lnA

2

1dnAnB), andṅB52(lnB
21dnAnB). The mean field equa

tions can be solved approximately for larget ~please see Ref
@19# for details! and one obtains

nA;
1

lt
, nB;

n0,B

@n0,Alt#g
, ~92!

provided g[d/l.1 and n0,A.n0,B . For d5l (g51) or
n0,A5n0,B the solution is trivial, and it can be easily show
that in such case theABBA model belongs to theA1A
universality class. These simple cases are not consid
here. Initial imbalance in particle concentration leads
faster diminishing of minority species, i.e.,u(t)
5nB(t)/nA(t)→0 ast→` given 0,u(0),1.

In the following we assume the mean field ansatz~92! and
try to solve Eq.~90! with it. The validity of such a mean field
ansatz will be checked self-consistently at the end. For la
times, and with mean field behavior (u→0), the matrixP
can be approximated by

P'lnAP, P5S 4 0 2g

0 2g 0

0 g 21g
D . ~93!

The fact thatP ~in the approximate form! is a constant matrix
multiplied by a time dependent function implies th

@Ṗ(t),Ṗ(t8)#50 ~dot over symbolP denotes time deriva
tive!. This being the case, Eq.~90! can be treated as a scal
equation and a calculation similar to the one in Sec. IV
gives

S wAA~ t !

wBB~ t !

wAB~ t !
D 5S nA~ t !2

nB~ t !2

nA~ t !nB~ t !
D 2E

0

t

dt8J~ t,t8!S lwAA~ t8!

lwBB~ t8!

dwAB~ t8!
D ,

~94!

where matrixJ(t,t8) is given by

J~ t,t8!5G~ t,t8!exp@2j~ t,t8!P# ~95!

and

j~ t,t8![lE
t8

t

dt9nA~ t9!. ~96!

Please compare Eqs.~44! and ~45! and Eqs.~94! and ~95!.
They are very similar, the only difference being in the mat
01110
e

o

ed
o

e

character of Eqs.~94! and~95!. Following the same steps a
in Sec. IV B, Eq.~94! can be approximated as

S wAA

wBB

wAB

D 'S nA
2

nB
2

nAnB

D 2J~ t,0!S IAA

IBB

IAB

D . ~97!

Now we proceed to show that, as in the case of Eq.~46!, the
second term on the right-hand side of Eq.~97! can be ne-
glected.

Matrix P can be diagonalized asP•U5U•V. The V is
diagonal matrix containing eigenvalues

v154, v252g, v3521g ~98!

and matrixU contains eigenvectors

U5S 1
g

g22

2g

g22

0
g22

g
0

0 1 1

D . ~99!

Inserting Eq.~92! into Eq. ~96!, and assuming larget, leads
to

j~ t,0!;const1 ln t, ~100!

and using Eq.~100! in Eq. ~95! gives

J~ t,0!;const3t2d/2US t24 0 0

0 t22g 0

0 0 t2(21g)
D U21.

~101!

Finally, the second term on the right hand side of Eq.~97!
can be calculated explicitly. Inserting Eq.~101! into Eq.~97!,
and assuming thatIrn r,n5A,B are constants~can be
checked for self-consistency at the end!, results in

wAA'nA
21t2d/2~c1t2v11c2t2v21c3t2v3!, ~102!

wBB'nB
21t2d/2c4t2v2, ~103!

wAB'nAnB1t2d/2~c5t2v21c6t2v3!. ~104!

The explicit form of constantsc1 , c2 , c3 , c4 , c5 andc6 is
not interesting since the aim is to show that terms contain
these constants are subleading to the mean field terms
studying the equation above row by row, it is possible
show that forg>1 the terms involving constants are su
leading to the mean field terms.

To see that the terms originating fromJ(t,0) are sublead-
ing, one really has to calculateU explicitly. For example, not
knowing that the contribution fromv1 is absent in Eq.~103!,
there would be a need to comparet22g @asymptotics of the
mean fieldnB

2 term in Eq.~103!# with t2(d/214) @coming from
J(t,0) and v1 eigenvalue#. One would conclude thatg
6-10
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APPLICATION OF BOGOLYUBOV’S THEORY OF . . . PHYSICAL REVIEW E 69, 011106 ~2004!
5d/l cannot be too large if mean field asymptotics is to ho
In reality, there is no such bound on ratiod/l since eigen-
valuev1 does not appear in Eq.~103!, but this can only be
seen after an explicit calculation.

The main finding so far is that WBGA describes th
ABBA andA1A models in the same way. For both mode
the WBGA-I ~WBGA-II ! predictsd/4 ~mean field! density
decay exponents. In the following section an attempt will
made to improve the WBGA method in order to obtain t
correct value of density decay exponent for theABBA
model.

C. WBGA ÕKirkwood approximation applied to A¿A
and B¿B sectors

Unfortunately, WBGA cannot give any reasonable pred
tions about asymptotic value for particle density rationu(t),
as it cannot even get the exponents right. How deep does
weakness of WBGA go? What needs to be changed in e
tions of motion~78!–~80! in order to get the correct deca
exponent? To answer these questions we begin by modif
more and more terms in Eqs.~78!–~80! by using the recipe
from Sec. IV C, i.e., the WBGA/Kirkwood scheme. It wa
already remarked in Sec. II that contributions toH describing
different reaction sectors enter additively, and this featur
reflected in equations of motion~78!–~80!, which opens a
way for such incremental changes.

We begin by modifying terms describingA1A and B
1B reactions in equations of motion forAA andBB corre-
lation functions. If one is to follow the procedure describ
in Sec. IV C, theO(n3) term in Eq.~78! has to be modified
as

4lnAGk
AA→2lGk

AA
nA

21FAA

nA
~105!

and likewise for Eq.~79!,

4lnBGk
BB→2lGk

BB
nB

21FBB

nB
. ~106!

This gives a new set of, hopefully better, equations:

]

]t
Gk

AA522Dk2Gk
AA2l~nA

21FAA!22lGk
AA

nA
21FAA

nA

22d~nBGk
AA1nAGk

AB!, ~107!

]

]t
Gk

BB522Dk2Gk
BB2l~nB

21FBB!22lGk
BB

nB
21FBB

nB

22d~nAGk
BB1nBGk

AB!. ~108!

Equation~80! stays the same, although Eq.~80! contains a
term proportional tol which should be modified if one fol
lows the principle outlined above. However, at the mome
Eq. ~80! will not be changed. The set of equations just d
scribed can be conveniently referred to as WBG
Kirkwood@AAlBBl#.
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To solve the WBGA/Kirkwood@AAlBBl# set of equa-
tions, it is useful to employ similar notation to the one us
in Sec. IV B:

Gk
rn[nrnnxk

rn ~109!

and

xrn[11
1

V (
kÞ0

xk
rn ~110!

with r,n5A,B. Using Eqs.~109! and~110! in Eqs.~81! and
~82! results in

]

]t
nA52~lnA

2xAA1dnAnBxAB!, ~111!

]

]t
nB52~lnB

2xBB1dnAnBxAB!. ~112!

Implementing the same notation in Eqs.~107!, ~108!, and
~80! gives

]

]t
xk

AA522Dk2xk
AA2lxAA22dnB~12xAB!xk

AA

22dnBxk
AB , ~113!

]

]t
xk

BB522Dk2xk
BB2lxBB22dnA~12xAB!xk

BB

22dnAxk
AB , ~114!

]

]t
xk

AB522Dk2xk
AB2dxAB2@lnA~22xAA!1lnB~2

2xBB!1d~nA1nB!~12xAB!#xk
AB2d~nAxk

AA

1nBxk
BB!. ~115!

The numerical solution of the set of equations above
shown in Fig. 2~dotted line!. The full line is a result of
Monte Carlo simulation where particle densities are obtain
as ensemble averages over 500 runs~simulation is repeated
500 times with a shift in the random number generator!. It
can be seen that WBGA/Kirkwood@AAlBBl# approach, as
expressed in Eqs.~113!–~115!, does not describe theABBA
model properly, not even qualitatively, since minority spec
die out faster~the particle density ratio grows to infinity!
while the simulation shows that density ratio should satur
to a constant value~full line!. The inspection of individual
density decays~not shown here! reveals that the equation
above correctly describe the decay of majority species,
nA;const3t2d/2, but fail to describe the decay of minorit
speciesnB .

To continue this line of incremental changes, in the f
lowing more terms will be modified by using WBGA
Kirkwood approach. The dash-dotted line in Fig. 2 show
solution of equations~not shown here! obtained from modi-
fying A1A andB1B reaction sectors using shortened Kir
6-11
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ZORAN KONKOLI PHYSICAL REVIEW E 69, 011106 ~2004!
wood superposition approximation in Eq.~80! describing
time evolution ofAB correlation function. These equation
will be referred to as WBGA/Kirkwood@AAlBBlABl#.
Equations obtained in this way are identical to Eqs.~113!–
~115! with the only difference that Eq.~115! changes in a
way that terms proportional tol drop out. In Fig. 2 it can be
seen that even in this case the density ratio curve climb
infinity, which is not the correct behavior, but the over
trend gets better as the dash-dotted curve lies below the
ted one and is pushed towards the simulation curve.

Finally, the equations of motion were studied where ev
thed terms~describing theA1B reactions! were modified in
equations of motion for all correlation functions. This set
equations will be referred to in the following a
WBGA/Kirkwood@AAl,dBBld ,ABld#, or even more briefly
as WBGA/Kirkwood@full #. Equations obtained in this wa

FIG. 2. The numerical solution of Eqs.~111!–~115! for d51
with increasing the amount of WBGA/Kirkwood approximatio
embedded~dotted, dash-dotted, and dashed lines; please see the
in Sec. VI C for details!. The full curve is the result of a Monte
Carlo simulation~average of 500 runs!. Parameters used areL
51000, nA(0)52, nB(0)51, l51, andd52. Panel~a! shows
particle density ratio, panel~b! shows individual densities. In both
panels lines are denoted in the same way. Panel~a! shows that only
full implementation of the WBGA/Kirkwood approximation
scheme qualitatively describes the density ratio. In panel~b! it can
be seen that all approximation schemes, apart from WBG
Kirkwood@full #, correctly predict the decay of majority specie
while failing to describe minority species. WBGA/Kirkwood@full #
describes both well. Both panels~a! and ~b! show that increasing
the amount of WBGA/Kirkwood in equations leads to successiv
better agreement with the simulation experiment.
01110
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are the same as in Eqs.~113!–~115! the only difference being
in the fact that all seeminglyO(n) terms drop out. Thus in
Eqs. ~113!–~115! only diffusion term and termslxAA ,
lxBB , and dxAB are kept in Eqs.~113!, ~114!, and ~115!
respectively. These equations are not shown explicitly
save the space but it should be clear how they look like. T
numerical solution for this set of equations is shown in Fig
as a dashed line.@It is possible to analytically extract densit
decay asymptotics for this truncated set of equations wh
givesnA(t);const3t2d/2 andnB(t);const83t2d/2.#

The set of equations where WBGA/Kirkwood superpo
tion approximation has been applied fully agrees with
numerical simulation much better than the ones obtai
from partial implementation. This is a strong indication th
at least for theABBAmodel, the WBGA/Kirkwood approxi-
mation is superior to the WBGA method. For example,
Fig. 2, the trend in all curves improves as the content of
WBGA/Kirkwood approximation is increased. As the goal
the present study is to understand the WBGA method be
the more thorough analysis of theABBA reaction based on
the Kirkwood superposition approximation will be present
in a forthcoming publication.

VII. CONCLUSIONS

The workings of the WBGA were analyzed on reactio
diffusion models with a trivial stationary state but nontrivi
dynamics in approaching this state. Admittedly, in doing
the WBGA approach was taken out of the original sphere
application with focus on highly correlated stationary stat
The A1A, A1B, and ABBA models were used as te
cases. TheA1A and A1B are excellent test models sinc
they are well understood. In the case of theABBAmodel, an
attempt has been made to calculate particle density r
u(t)5nB(t)/nA(t). Also, some seemingly independent ca
culation schemes available in the literature were related
each other.

It was shown that the WBGA fails to describe theA1A
model, on both WBGA-I and WBGA-II levels. On the othe
hand, it describes theA1B reaction well, out of pure coin-
cidence so it seems. The failure of the WBGA to describe
A1A model was analyzed in detail at two stages.

~1! It was shown that the WBGA amounts to approxima
ing the three-particle correlation function in a particular wa
which corresponds to additive approximation of correlati
functions, being already criticized before in the context
fermionic models which allow for single occupancy of lattic
sites only.

~2! To cure the deficiency of the WBGA method, a way
approximating three-particle correlation was suggested in
form of Kirkwood inspired the WBGA approximation, re
ferred in the text as the WBGA/Kirkwood approximation. T
the best of our knowledge no such approach, nor any o
form of the Kirkwood superposition approximation, was ev
used to describe bosonic models where multiple occupa
of lattice sites is allowed with extremely local on-site rea
tions. It was shown that the WBGA/Kirkwood approxima
tion suggested here leads to the correctd/2 decay exponen
for the A1A reaction.
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APPLICATION OF BOGOLYUBOV’S THEORY OF . . . PHYSICAL REVIEW E 69, 011106 ~2004!
The equivalence of the WBGA-I and dressed-tree cal
lation of Ref. @20# was demonstrated, for the case of theA
1A reaction. However, it can be easily seen that this equ
lence holds for any model where particles annihilate in pa
Furthermore, it was shown that for theA1A reaction the
dressed-tree calculation results in thed/4 density decay ex-
ponent, and the error in Ref.@20# was corrected. In such
way seemingly contradictory claims of Refs.@20# and @6#
were sorted out.

Also, it was shown that the WBGA cannot describe t
ABBAmodel, very likely, for the same reasons as theA1A
model since these two models fall in the same universa
class. In the case of theABBA model the WBGA-II predicts
faster vanishing of minority species, which is suggestive
the (A1B)-like behavior rather than the behavior of th
ABBA model as found in Refs.@18,19#. This bias towards
A1B type behavior is very hard to get rid of as successiv
correcting more and more terms in equations of motion
the ABBA the model by using the WBGA/Kirkwood ap
proximation results in faster vanishing of minority specie
The vanishing of minority species persists until all terms
modified by the WBGA/Kirkwood method. The WBGA sim
ply emphasizes theA1B reaction sector too strongly in th
ABBA model.

The findings of this work suggest that the formalism e
ployed by Mattis and Glasser in Ref.@6# where a smalln0
expansion is introduced~and applied to study theA1B
model! is somewhat questionable. This procedure works
theA1B model, but might not work for other models. It ca
be shown~by rescalinga†n0→a† anda/n0→a) that for the
type of models studied here, the smalln0 approximation of
Ref. @6# amounts to taking away three body terms in t
Hamiltonian given in Eq.~5! or ~14! ~e.g., operators of the
type a†aa and likewise any mixture ofa or b operators!.
Neglect of these terms amounts exactly to the WBGA-I
proach, which is criticized here. For these reasons, a sman0
expansion, which effectively means taking away the th
body term in the Hamiltonian, cannot be trusted if used
yond theA1B model.

There is a strong indication from the present analysis
the WBGA/Kirkwood approximation is superior to th
WBGA method, at least when applied to theA1A and
ABBA models. However, it remains to be seen whether
bosonic on-site reaction version considered here, works
theA1B model, which the pure WBGA describes well. A
tually, it is likely that it will not work. For example, a simila
study ~where only single occupancy of lattice sites was
lowed and reaction range was assumed short but fin!
showed that only the full Kirkwood superposition approx
mation can describe theA1B reaction @4#, while here an
equivalent of the shortened Kirkwood superposition appro
mation was used. Extending the present analysis to the
Kirkwood superposition approximation will amount to kee
ing all terms in Eq.~58!. Extending the WBGA in the direc
tion of the full Kirkwood superposition approximation wi
be presented in a forthcoming publication.

There is an interesting question about how to implem
the decoupling schemes of this work in the case of react
diffusion systems of ‘‘hard-core’’ particles, i.e., system
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where each site can be at most occupied by one part
What would be the efficiency of these approximate schem
for these systems? The hard-core constraint may have a
matic effect on the dynamics in some cases@26#. In one
dimension it is possible to reformulate reaction-diffusi
systems of hard-core particles in a spin language and t
via a Jordan-Wigner transformation, adopt a fermionic fie
theoretical formalism~for detailed instructions on carrying
out this procedure see, e.g., Ref.@27#!. The present schem
could be applied to the averages involving products of f
mionic operators, once the Jordan-Wigner transformation
been made.

To conclude, it would be interesting to have a relative
simple approximation at hand, not far away from the p
approximation, which could be used to extract qualitat
asymptotics for an arbitrary reaction-diffusion model, irr
spective of which model one studies. Clearly, such a prog
is ambitious since in reality one is bound to make an
proximation which is related to the particular model bu
nevertheless, it is worth a try. TheA1A andA1B reaction-
diffusion models ~or combination of them! are excellent
benchmark models and any successful approximation sh
strive to describe these reactions properly. The present s
is an attempt in this direction.
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APPENDIX A: TERM MATCHING

Here, the calculation done in Ref.@20# will be repeated to
show how to balance terms correctly. Also, the calculat
will justify approximations employed in Ref.@6# more rigor-
ously as the method of calculation employs a Laplace tra
form and the well known Tauberian theorems which rel
small s with large t behavior. In this way all the approxima
tions are controlled.

To extract the asymptotic behavior forn(t) from Eq.~42!,
one assumes that at large times density decays as

n~ t !'A~m1t !2a . ~A1!

A and a denote amplitude and exponent of decay to
found. m is introduced as a regulator for smallt so that
Laplace transform ofn(t) andn2(t) exist:

n~s!5Aesmsa21G~12a,ms!, ~A2!

n2~s!5A 2esms2a21G~122a,ms!, ~A3!

and please note thatn(s)2Þn2(s). To extract asymptotics
one inserts Eqs.~A2! and ~A3! and Eq.~41! into Eq. ~40!,
expands in smalls ~to extract leading order behavior fo
large t), and matches the most dominant terms.

The expansion ofg(s) for small s is given by
6-13
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ZORAN KONKOLI PHYSICAL REVIEW E 69, 011106 ~2004!
g~s!5~8pD !2d/2eshFG~12d/2!sd/2211
2h12d/2

d22
1O~s!G

~A4!

for dÞ2,4,6, . . . . Ford52 one has

g~s!5~8pD !21esh@2gE2 ln~hs!1O~hs!#, ~A5!

wheregE is the Euler constant. Please note that the beha
of g(s) for small s is qualitatively different ford,2 andd
.2 which has to do with recurrence of random walks bel
and aboved52. For smalls and d,2 g(s)}sd/221 while
for d.2 g(s)5const. Atd52 there is logarithmic depen
dence ons. The termesh can be neglected if leading orde
behavior for small s~large t) is sought for.

At the moment we focus on thed,2 case. Inserting ap
proximate formulas above forg(s) into Eq. ~41! gives

leff~s!;
~8pD !d/2

G~12d/2!
s2d/211, d,2. ~A6!

Since the value fora is not known, one has to separa
various cases: expansion forn(s) reads

n~s!5AH @G~12a!sa211O~1!#, a,1

Fm12a

a21
1O~sa21!G , a.1

~A7!

and likewise

n2~s!5A 2H @G~122a!s2a211O~1!#, 2a,1

F m122a

2a21
1O~s2a21!G , 2a.1.

~A8!

Inserting smalls expansions~A6!–~A8! into Eq. ~40! gives

A@saG~12a!1O~s!#2n0

52A 2
~8pD !d/2

G~12d/2!
@s2a2d/2G~122a!1O~s12d/2!#.

~A9!

Also, please note that there are two different forms to use
n(s) andn2(s) in Eqs.~A7! and ~A8! and the ones used i
~A9! were for a,1 and 2a,1, respectively~same choice
was made in Ref.@20#!. Oncea is found, one has to chec
these conditions ona for self-consistency. There are tw
ways to match the terms in Eq.~A9!: ~a! as in Ref.@20# and
~b! in a way related to the work in Ref.@6#. We begin with
the first case.

Balancing thesa term on the left hand side of Eq.~A9!
with s2a2d/2 on the right-hand side givesa5d/2 and

Aa52
1

p
sin~pd!G~d!G~12d/2!2~8pD !2d/2.

~A10!
01110
or

r

Also from a,1 and 2a,1 one has the constraint thatd
,1. However, ford,1 the term sin(pd) is positive, which
makes the amplitudeAa negative. Thus all physical condi
tions cannot be met with this type of matching. In Ref.@20#
the conditiond,1 @coming from the fact that the first row i
used in Eq.~A8!# was overlooked~if d.2 is allowed, am-
plitude Aa is perfectly acceptable!.

Thea5d/2 scenario can still turn out to be true. With th
choice ofa and thed,2 condition coming from Eq.~A6!
the second row in Eq.~A8! has to be used. Again, carryin
out a similar type of matching procedure would give neg
tive amplitude. Finally, thea5d/2 avenue has to be give
up.

At this stage one is left by the second~b! way of balanc-
ing, i.e., matching the constantn0 term on the left-hand side
of Eq. ~A9! with s2a2d/2 on the right-hand side.@The remain-
ing terms, e.g., thesa on the left-hand side, can be balanc
by considering subleading corrections ton(s).] This way of
balancing immediately givesa5d/4 and

Ab5An0~8pD !2d/4 ~A11!

with constraints thatd,2 @Eq. ~A6! was used to get Eq
~A9!#.

Matching the constant termn0 on the left-hand side of Eq
~A9! is rather counterintuitive since in the framework
Laplace transform constant can normally be disregar
when larget behavior is sought for. To see how this com
about, it is useful to turn back to Eq.~40!.

Equation ~40! comes from Eq.~37!. For simplicity we
focus on the casel5` in Eq. ~37!. It is clear that at the
right-hand side of Eq.~37! the sn(s) term is subleading to
n0. @True enough,n0 is constant but it is multiplied byg(s).#
Thus n2(s) indeed has to be matched withg(s)n0. This
procedure results in amplitudeAb obtained previously. Also,
by using form~37!, one can show that amplitudeAb as given
in Eq. ~A11! is valid even ford.2. Analysis can be repeate
with finite value ofl with the same outcome. It is importan
to mentioned that procedure outlined above does not wor
d>4 and it has to be modified.

APPENDIX B: DETAILS OF NUMERICAL INTEGRATION

Here, the numerical treatment of Eqs.~33! and ~34! is
described in more detail. The general procedure for integ
ing expressions of the type

I i@ f #5E
0

t i
dsK~ t i ,s! f ~s!, ~B1!

whereK(t,s) is singular when s approaches t is described
Ref. @28#. The i 50,1,2, . . . andt i5 ih. The following pro-
cedure described in Ref.@28#, and using K(t,s)5(t2s
1h)2a, results in the quadrature formula:

I i@ f #'(
j 50

i

wi j f ~ t j !, ~B2!

where coefficientswi j are given by
6-14
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wi05
h12a

~a21!~a22!
@~22a2 i 2h!~ i 1h!12a

1~ i 1h21!22a#, ~B3!

wi j 5
h12a

~a21!~a22!
@~ i 2 j 1h21!22a1~ i 2 j 1h11!22a

22~ i 2 j 1h!22a#, ~B4!

wii 5
h12a

~a21!~a22!
@~11h!22a1h12a~a2h22!#.

~B5!

The coefficientswi j are chosen from the requirement that E
~B2! is exact if f (t) is a piecewise linear function.

The pair of equations in~33!–~34! is discretized as fol-
lows. First the differential equation~33! is rewritten in inte-
gral form asn(t)5n02l*0

t dsw(s) and trapezoidal rule is
used to evaluate the integral since all functions are well
haved. However, for Eq.~34! the rule~B2! and Eqs.~B3!–
~B5! designed for singular kernel is used. Implementation
this philosophy gives

ni5n02lhFw0

2
1(

j 51

i 21

w j1
w i

2 G , ~B6!

w i5ni
22l(

j 50

i 21

wi j w j2lwii w i , ~B7!

whereni5n(t i) andw i5w(t i) for i 50,1,2, . . . . Given that
all nj andw j are known forj 50,1,2, . . . ,i 21 using equa-
tions above it is possible to calculateni andw i . The iteration
is started withn05n(0) andw05n0
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APPENDIX C: FINDING THE INVERSE LAPLACE
TRANSFORM OF k„s… FOR dÄ2

Here the inverse Laplace transform ofk(s) for d52
given in Eq.~66! will be found. Due to the presence of lo
one has to use the Bramowitz contour to perform integrat
over s. Also, the functionk(s) does not have poles. Thi
means that only contribution tok(t) comes from the branch
cut and one obtains

k~ t !58pDE
0

`du

u
e2ut

1

@gE1 ln~hu!#21p2
~C1!

In the following we seth51 but keep in mind that at the en
of the calculationt has to be changed intot/h.

As t grows, due to the presence of exp(2ut), only smaller
and smaller values foru contribute to the integral above
which can be approximated as

k'~8pD !E
0

cdu

u
e2ut

1

~ ln u!2
, ~C2!

wherec is an arbitrary constant less than 1. It can be sho
that the terms omitted or missing the integration range do
influence the leading order behavior fork. By using partial
integration, and change of variablestu5v, the expression
above becomes

k~ t !'
8pD

ln t E0

ct

dve2v
1

12
ln v
ln t

. ~C3!

By sending the upper integration limit to infinity, and e
panding the denominator in series over lnv/ln t, gives the
result fork(t) in Eq. ~67!.
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